
JBOSS DATA GRIDJBOSS DATA GRID
PERFORMANCEPERFORMANCE
TUNINGTUNING
Divya Mehra - JBoss Data Grid Product Manager

Vijay Chintalapati - Middleware Solutions Architect

John Osborne - Middleware Solutions Architect

AGENDAAGENDA

JBoss Data Grid Introduction and Use Cases
Performance Tuning Components

Configuration and Sizing

Tuning the JVM for a distributed system

Platform and Network Considerations

Coding for a low memory footprint

Persistent Stores

Tuning for Queries

Benchmarking
Roadmap

JBOSS DATA GRIDJBOSS DATA GRID
INTRODUCTIONINTRODUCTION

RED HAT JBOSS DATA GRID
A distributed, in-memory NoSQL datastore

HIGH PERFORMANCE AND SCALABILITY

CERTIFIED INTEGRATION WITH OTHER JBOSS

PRODUCTS

POLYGOT

FULLY OPEN SOURCE

In-memory access to large data-sets

High availability, easy scale out

Java, C++, .NET Hot Rod clients

REST and memcached protocols available

JBoss EAP, JBoss Fuse, JBoss Data Virtualization, JBoss Web Server

Based on popular Infinispan project

USE CASE #1
Side cache – as a secondary, high performance store

 Database is the primary store

 Distributed cache stores copy

 Application uses the

distributed cache as the data

source

 Improves response time

by avoiding roundtrip to

database

USE CASE #2
Inline cache – primary high-performance, scalable store

App requests data (K1)

If (k1,v1) not in-memory already,

Cache retrieves from persistent

store

App writes data (K2)

Cache writes to persistent store (K2)

USE CASE #3 (emerging)
In-memory compute grid

Process TBs of data rapidly using
in-memory distributed computing
frameworks:

Distributed execution

Map/Reduce

Leverage parallel computing

Multiple nodes of the cluster

Multiple cores on a machine

DEPLOYMENT MODES
Library mode – Embedded cache

 Clustered JDG caches share heap

with applications

 Data grid scales with the application tier

 Application accesses a cache

entry, regardless of whether it is

present on locally or on a remote

node

DEPLOYMENT MODES
Client-server mode – Remote cache

 Applications communicate with

JDG server via protocols

Hot Rod

REST

Memcached

Data grid scales independent of

application tier

CLIENT AND SERVER
Multiple access protocols

Hot Rod: Native TCP client/server protocol with rich functionality

Hashing and topology aware

Failover during topology changes

Smart request routing in partitioned or distributed server clusters

ARCHITECTURE
Replicated cache

Replicate the (key/value) entry

to each node of cluster

Local reads

Writes become slower with

increasing number of nodes

Data limited to a single JVM

heap size

IDEAL FOR
Small, fixed datasets

Highest read performance (local reads)

ARCHITECTURE
Distributed cache

 High performance +

high scalability

 Typically maintain 2 or

3 copies of each entry

on separate nodes

 Server hinting allows

nodes on separate

physical machines

PERFORMANCEPERFORMANCE
TUNINGTUNING

SELECTING ASELECTING A
CONFIGURATION ANDCONFIGURATION AND
SIZING ITSIZING IT

Library Mode vs Client Server ModeLibrary Mode vs Client Server Mode

Use Library mode for specific use-cases such as :

Map/Reduce, Distributed Execution, XA transactions, Advanced API etc

Use Client-Server mode when there is a need for :

Separation and maintenance of client and JDG processes

Choice of multiple protocols (REST, Memcached, Hotrod)

Data access from non-Java applications

The ability to transparently and horizontally scale for 'dist' caches

Rolling upgrades without impacting client applications

Initial Sizing ConsiderationsInitial Sizing Considerations

 How much data do you think you will have in memory?

x = key size + value size + 200bytes metadata (library mode)

x = Serialized key size + Serialized value size + 200b (server mode)

How many entries (y)?

Early heap analysis may be required

 Percentage of live data in the heap? (p = 0.5)

 How many copies (n) of the data will I need?

Rule of thumb: Never fill more than half the heap with live data.

Tip: Heap Dumps are your friend

Distributed Cache Sizing ExampleDistributed Cache Sizing Example

JVM heap size, S = 32GB

x = 1KB, y=64,000,000 ==> 64GB

How many nodes to store a single copy of data?

Need to tolerate 2 node failures (numowners=3)

Tip: Allocate enough cores to keep up with larger heaps

m1 = + 1 = + 1 = 5
p×S
x×y

0.5×32GB
1KB×64M

total = m1 × n = 5 × 3 = 15

Tip: Server hinting allows multiple heaps per server

JVM TUNING FORJVM TUNING FOR
DISTRIBUTEDDISTRIBUTED
SYSTEMSSYSTEMS

Java 7 improvements

 JIT Compilation

 Increase the Code Cache (-XX:ReservedCodeCacheSize=256m)

 Enable Tiered Compilation (-server -XX:+TieredCompilation)

 Use backported Java 8 CHM -Dinfinispan.unsafe.allow_ jdk8_chm=true

Garbage Collection ConsiderationsGarbage Collection Considerations

 STW pauses for large heaps can last several minutes

 Network buffers fill up, potential data loss

 JGroups can remove the node from the cluster

 Potential "split-brain" problem

 In most cases you want to pick one of the concurrent

collectors

 Concurrent Mark Sweep (CMS)

 Garbage First (G1)

Initial Tuning CMSInitial Tuning CMS

 Always turn off adaptive sizing (-Xms=-Xmx)

 Typical JDG data set lives longer than traditional JEE

 Manually tune for smaller young generation

 -XX:NewSize=-XX:MaxNewSize - start 1/8 heap (2GB max)

 CMS balancing act

 Smaller new size => decrease throughput

 Larger new size => Risk of STW

 Increase the Eden size -XX:SurvivorRatio=16 (or 32)

 Turn on PermGen collection (Java 7 only)

 -XX:+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled

CMS Woes?CMS Woes?

Concurrent Mode Failure (gc logs)

 Increase the heap size

 Increase the old generation

 Start CMS earlier

 -XX:CMSInitiatingOccupancyFraction=60 -XX:+UseCMSInitiatingOccupancyOnly

Insufficient heap size (> 50% live data)

Sawtooth pattern (VisualVM)

 Increase the NewSize

Initial G1 Tuning

Always turn off adaptive sizing (-Xms=Xmx)

Tune the pause time (–XX:MaxGCPauseMillis) to meet the
90th percentile for your SLA

Starting points: 500ms for 32GB, 1000ms for 64GB

Larger values increase the throughput

G1 Woes

 STW Pauses “Full GCs”, “to-space overflow/exhausted”

 Solutions

 Increase –XX:MaxGCPauseMillis

 Increase the heap size

 Modify -XX:InitiatingHeapOccupancyPercent (default 45)

But not lower than the % of live data!

 Increase -XX:ConcGCThreads

DECREASING YOURDECREASING YOUR
MEMORY FOOTPRINTMEMORY FOOTPRINT

Java Strings

Avg % of live heap = 25%
Avg % of live heap duplicated Strings = 13.5%
Average String length = 45 characters

How much space does the following take up on
64-bit RHEL system?

String str1 = “”;

String str2 = “Hi”

String str3 = “Hello”

Java Strings (cont.)

Answers:

String str1 = “”; ==> 40 bytes

String str2 = “Hi”; ==> 48 bytes

String str3 = “Hello” ==> 56 bytes

Can save > 50% space by using byte[] arrays if you are

using English or other European Language based

Characters in your Strings (library mode)

str3.getBytes("UTF-8"); ==> 24 bytes

Java Strings
private byte[] name;
private final Charset UTF8_CHARSET = Charset.forName("UTF-8");

…

public String getName(){
 return new String(name, UTF8_CHARSET);
}
public void setName(String newName){
 name = newName.getBytes(UTF8_CHARSET);
}

Java Strings (cont.)

Duplicate Strings?

 Doesn’t the JVM make sure my string constants aren’t duplicated?

 String intern?

Are you using G1 and Java 8 (update 20+)?

 XX:+UseG1GC -XX:+UseStringDeduplication

 Works for JBoss Data Grid Dynamically Generated Strings

 Preloaded String Heavy Objects

 State transferred Strings

Other Tips

 Use smaller instance variables

 Replace wrappers with instance vars //Double is 3x double

 Be aware of object overhead

 Avoid allocating the same object multiple times

 Modifying immutable (like a String) objects in a loop

 If you must with Strings, use your own StringBuilder

 Use lazy instantiation for infrequently used values

 Avoid finalize()

PLATFORM ANDPLATFORM AND
NETWORK TUNINGNETWORK TUNING
(YES JGROUPS)(YES JGROUPS)

Networking with JBoss Data Grid

JDG leverages JGroups technology

Created by Bela Ban (Red Hat) during his Post-doc at Cornell

Subsystem in EAP and JBoss Data Grid for clustering

JDG 6.4 adds new default values that covers almost all use cases

Configure the OS for the JGroups Buffer Sizes

sysctl -w net.core.rmem_max=26214400

sysctl -w net.core.wmem_max=1048576

Enable Jumbo Frames

Huge Pages

 Enable on the JVM level -XX:+UseLargePages

 Enable at the OS level

 RHEL Ex: 2 64GB JVMs running on a server

 Verify “java -Xmx<JDG max heap size>g -XX:+UseLargePages -version”

 Disable Transparent Huge Pages

hugepages ≥ = 327684∗220
(64+64)∗230

Threads

 JBoss Data Grid encourages horizontal scalability

 Typical implementations run many parallel threads

 If the threads are creating their own variables then

consider giving the threads their own buffers

 -XX:+UseTLAB

 ‐XX:TLABSize

 Eden must be > # JDG threads * TLABSize

PERSISTENT STORESPERSISTENT STORES

Cache Stores

 Shared Cache Stores

Every node in the cluster writes to the same store

 Local Cache Stores

Each node has its own cache store

A key update will result in a write to the cache store of every owner

 Recommendations

Shared stores, good for small clusters, can be a bottleneck for large

ones

LevelDB is the highest performing local cache store

Performance of the Persistent Stores

 Write-Behind (Async) speeds up write to cache

 Prevent cache misses by warming up (preloading) the cache on startup

 For a JDBC cache store:

 Creating indexes on 'id' column can prevent a table scan.

 Setting createOnStart on the table definition automatically takes care of

defining the id column as PRIMARY KEY

 Configure batch-size, fetch-size, etc

 JPA cache store in library mode automatically takes advantage of the primary keys

TUNING FOR QUERIESTUNING FOR QUERIES

<property name="hibernate.search.infinispan.chunk_size">4096</property>

 Increase the chunk size

Use Filesystem Directory Provider

<property name="default.indexmanager" value="near-real-time" /> Use Near-Real-Time Indexing

Local Replicated Index

Shared IndexShared Index

 Lucene Infinispan Directory uses three caches to store the index:

Data cache, Metadata cache, Locking cache

General Query Performance TuningGeneral Query Performance Tuning

Pagination

CacheQuery cacheQuery =
Search.getSearchManager(cache).getQuery(luceneQuery, Customer.class);
cacheQuery.firstResult(15); //start from the 15th element
cacheQuery.maxResults(10); //return 10 elements

Filter the Search Results by Entity Type

CacheQuery cacheQuery =
Search.getSearchManager(cache).getQuery(luceneQuery, Customer.class);

Asynchronous Indexing <property name="default.worker.execution">async</property>

@ Indexed
public class Person implements Serializable {
@ Field(store = Store.NO) // Store.NO is the default option

Avoid Storing Fields in the Index unless using projections

BENCHMARKINGBENCHMARKING

Radar GunRadar Gun

Radargun is an open-source IMDG benchmarking tool

Easily benchmark and compare JBoss Data Grid, EHCache,

Coherence, etc.

M/S model; Master runs stages in parallel on all slave nodes

load-data

check-cache-data

cluster-validation

basic-operations-test

bulk-operations-test

jvm-monitor-start / stop

total # of such operations

Percentages for each CRUD op

entry sizes, key generator, value generator

num of entries

num of threads per node

duration of the entire test etc.

Easily DefineStage includes

Radargun ScenarioRadargun Scenario

Radargun ResultsRadargun Results

ROADMAPROADMAP

Roadmap

The roadmap slides have been removed from this presentation to avoid

potentially stale content being broadly circulated. If you would like a

briefing on the current roadmap - please contact your local Red Hat sales

team

Questions?

TROUBLESHOOTINGTROUBLESHOOTING

Heap Dumps are your friend

Snapshot of memory of a java process
What it gets you

All objects and references

All classes, class loaders, static fields, super classes

Thread stacks and local variables

What it does not do

Allocation information

Who created the object

Where was it created

Acquiring the dreaded heap dump

 There are several easy ways to acquire the heap dump:

jcmd <pid> GC.heap_dump /path/file.hprof

jmap -dump:live,file=my_ jdg_stack.bin <pid>

 Automatically through runtime flags

-XX:+HeapDumpAfterFullGC

-XX:+HeapDumpOnOutOfMemoryError

 Invoke the MBean operation (i.e. jconsole, visualvm)

Red Hat recommends the Memory Analyzer Tool for

heap dump analysis in JBoss Developer Studio or

Eclipse

Analyzing the Heap Dump (cont.)

