

Jenkins for continuous delivery of
infrastructure via Docker

Greg Hoelzer and Michael Heldebrant
Red Hat
June 2015

AGENDA

●CI/CD for Infrastructure
●Docker Tagging and Genealogy
●Testing in the context that is deployed to production
●Docker factory floor from OS image to production
●Build Slaves
●Dockerfile builds via Jenkins
●Docker container build slaves for Jenkins
●Production image build

●Satellite 6 and container builds
●Patch cycle with Containers

An allegory for managing constant change in operations

Traditional patch cycle in a
downtime window Continuous Delivery

CI/CD for infrastructure?

Challenge: How can you continuously deliver and
integrate the latest infrastructure and platforms to
deploy and maintain your applications?

Solution: By continuously updating and deploying
infrastructure to build and test your applications that you
can then deploy in a single unit to production.

Docker containers are one way to approach this solution.

Tagging

Docker tags

By using symbolic tags you automatically update your inputs to the next step
of the factory build with Dockerfiles via the FROM value

For example:

OS:latest – always the most current OS update that finished a docker build

Platform:latest – the most current platform installed onto OS:latest

YourApp:latest – the most current application deployed on Platform:latest

Inputs update automatically via tags

Docker tags:versions
Multiple factory lines can coexist. All Docker images that are the same input
and steps are cached and reused in the build process.

For example:

YourApp:Latest – always the most current update that finished a Docker build

YourApp:QA – the version undergoing testing

YourApp:Tested – the version that passed integrated testing

YourApp:Production – the most current version running in production

YourApp:Next – the next version to deploy to production

YourApp:Tested-datestamp – save a tag by date that passed the build and testing for
archive

Genealogy

Docker genealogy

Testing

Has this ever happened to you?

Don’t act like a bond villan DevOps team, take full advantage of your
new capabilities:

Dr. Evil: All right guard, begin the unnecessarily slow-moving dipping mechanism.
[guard starts dipping mechanism]
Dr. Evil: Close the tank!
Scott Evil: Wait, aren't you even going to watch them? They could get away!
Dr. Evil: No no no, I'm going to leave them alone and not actually witness them dying,
I'm just gonna assume it all went to plan.

The Old way:
Of course the app was “tested” before the production
deployment! It worked on my laptop!

Test at multiple levels

●Unit test your applications during the build in the same context as
production will use

●Plan for automated integration tests: launch a whole app stack of
containers, even database containers, and a driver container to run the
tests

●Reduce human interventions as much as possible as it will become a
bottleneck

New way:
Developers are responsible for writing tests to catch broken
apps before deployment
Operations provides correct testing OS+Platform containers

Factory

Build a Docker factory

How does CI and Containers work together?

Define your jobs in Jenkins to build the next dependent job
●Jenkins will build from the point of change all the way to the end of the factory
●Fan out strategy for variants you need to support such as multiple jdk versions
●Fan out for for multiple os versions or patch levels, latest/tested/production/next

Docker run build and test containers via symbolic tags
●Restart containers with new code early and often in the latest track
●Restart containers with the latest versions of other tracks as they are promoted
●Always make sure you can build an app only change in the production and next tracks

Requirements to be a build slave
●Remote access

●ssh access is easy to set up
●configure credentials in jenkins

●password
●ssh keys

●Be able to run slave.jar
●CPU
●RAM
●Java JRE

●Be able to build your projects
●Maven
●Git
●GCC
●etc

Containers can be build slaves:

Test your builds on the same versions as deployments

●Create build slaves that share the common ancestor image of the deployment container
●Unit tests should be written that catch changes in operating system or platform that break
the application

●Restrict build jobs to the proper labeled build slave

Factory Overview

Don't Panic: Step by Step walk through

Satellite 6 and containers

Subscription Management for containers

Using the RHEL 7 subscription model, to create Docker images or
containers, you must properly subscribe the container server on which
you build them.

If you use the Red Hat registry.access.redhat.com docker images, when
you use yum within the container to add or upgrade packages, the
container automatically has access to the repositories available to the
RHEL 7 host.

The containers can get RPM packages from the appropriate
repositories so that RHEL6 image and RHEL7 image containers can co-
exist on the same RHEL7 container host.

Satellite 6 for containers
In Satellite 6 create a composite content view that includes your:
●RHEL6 content view
●RHEL7 content view

Create activation keys
●Selects the composite content view and proper lifecycle environment
●Only the RHEL7 repos are set to enabled for the host
●Use for a RHEL7 container host during provisioning

Containers can use RHEL6 and RHEL7 repos on this host with the
advantage of content management capabilities

●Library matches latest content from Red Hat Network
●Lifecycle environments can match your needs for managed changes

●QA
●Next
●PRD

Advantages of the container factory

Patch cycle becomes a cutover

No more patching in place in a downtime window

Continuous Deployment via health checks

Kubernetes Concepts

Pods
● Collection of co-located containers with a unique ip address
● Connect containers in the pod to each other via localhost networking
● Shared volume(s)
● Labels for Replication Controllers and Services to select

Kubernetes Concepts

Replication Controllers
●Keep N copies of a pod running or update N
●Pod templates describe the pod to manage
Services
●Stable IP and ports for connecting pods together across a cluster of
container hosts

●Services are long lived compared to Pods

Kubernetes rolling updates

Replication controller rolling updates - manual
●Replication controller for production – N copies
●Rolling upgrade starts – both replication controllers are selected by the same service
●Replication controller for production – N – 1 copies
●Replication controller for next version of production – 1 copy
●...Repeat until...

●Upgrade finishes
●Replication controller for production (old) – deleted after 0 copies
●Replication controller for current version in production – N copies

Rolling updates - automated:
●Update the pods of frontend by just changing the image, and keeping the old name

●$ kubectl rolling-update yourapp --image=yourapp:v2

OpenShift 3.0 automatic updates

Configuration Change Trigger
●The ConfigChange trigger results in a new deployment whenever changes are
detected to the replication controller template of the deployment configuration.

Image Change Trigger
●The ImageChange trigger results in a new deployment whenever the value of an
image stream tag changes.

Portability
Where you build does not have to be where you run
Docker images can run anywhere RHEL can run via registry servers

●Physical
●Virtual
●OpenStack
●Public Cloud
●Developer Laptops

Other benefits
Only Backup/Restore or make DR ready what is needed

●Jenkins server
●Satellite 6
●Source code repositories
●Databases and systems of record

Rebuild instead of Restore reduces backup load and time to recovery
●OS and Platform containers
●Build containers
●Application containers

Rapid security response capable
●Critical security patch: promote errata in Satellite 6 and rebuild production factory

Always ready to deploy
●Latest builds available for OS, Platform, Application changes
●Take images anywhere to develop or deploy, developer laptop or cloud provider

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

