
Using OpenShift &
PaaS to accelerate

DevOps & Continuous
Delivery

Andrea Morena, @andreamorena5
Arun Gupta, @arungupta

Andrea Morena
Senior Solution Architect 
 

@andreamorena5
amorena@redhat.com

mailto:amorena@redhat.com

Arun Gupta
Director, Developer Advocacy &
Technical Marketing

@arungupta
blog.arungupta.me
arungupta@redhat.com

mailto:arungupta@redhat.com

Organizations implementing DevOps

https://puppetlabs.com/wp-content/uploads/2013/03/2013-state-of-devops-report.pdf

https://puppetlabs.com/wp-content/uploads/2013/03/2013-state-of-devops-report.pdf

CRAFTWORK

WORKSHOP

MANUFACTURING
(DEVOPS)

FACTORY
(CLOUD) 

What is DevOps?
It’s  

DevOps!

It’s  
DevOps!

It’s  
DevOps!

It’s  
DevOps!

It’s  
DevOps!

It’s  
DevOps!

https://sites.google.com/a/jezhumble.net/devops-manifesto/

https://sites.google.com/a/jezhumble.net/devops-manifesto/

Five “C”s of DevOps
• Collaboration between “dev” and “ops”

• Culture

• Code everything - application and configuration

• Consistency - automation over documentation

• Continuous delivery

Collaboration
• “Dev”

• Engineering

• Test

• Product management

• “Ops”

• System administrators

• Operations staff

• DBAs

• Network engineers

• Security professionals

“Dev” “Ops”

Culture

• Respect other’s expertise, opinions, responsibilities

• Trust: Ops to think like devs, vice versa

• Leads to transparency

• Don’t ignore failure, build joint recovery plans

• Amplify feedback loops

http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

“Treat
people
warmly,
issues
coldly!”

http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

“you build it, you run it!”

With great
power, comes great

responsibility

Code everything
• Application code

• Build scripts

• Database schema

• Configuration files

• IDE configurations

• Infrastructure

• Deployment scripts

• Test code and scripts

• Provisioning scripts

• Monitoring

• Logging

• …

“Never send a human to do a machine’s job”

Consistency
• Automation over documentation

• Repeatability

• Push-button deployments

• Managing environments

Dev

Test

Prod

Manage environments
• Cloud computing: PaaS, OpenShift, …

• Virtualization: Virtual Box, Vagrant, …

• Containers: Docker, Rocket, …

• App server: JBoss EAP, Tomcat, …

• Configuration tools: Puppet, Chef, Ansible, Salt

• Orchestration: Kubernetes, Swarm, …

Dashboards
• Build dashboards, improve transparency

• stackexchange.com/performance

http://stackexchange.com/performance

Continuous Delivery
• Continuous Integration

• Fail fast and recover

• Self service

• 100% Automation

• Push to Prod

• Proactive monitoring and metrics

Release

Build

Test

Deploy

Manual
Acceptance

“it is the practice of
releasing every
good build to

users”

“continuous
integration to its

logical conclusion”

Deployment Pipeline

“an automated implementation of
your application’s build, deploy,
test, and release process"

Initial Managed Defined Quantitatively
Managed Optimizing

Culture &
Organization

• Teams organized
based on platform/
technology

• Defined and
documented
processes

• One backlog per
team

• Adopt agile
methodologies

• Remove team
boundaries

• Extended team
collaboration

• Remove boundary dev/
ops

• Common process for all
changes

• Cross-team continuous
improvement

• Teams responsible all the way to
production

• Cross functional teams

Build & Deploy

• Centralized version
control

• Automated build
scripts

• No management of
artifacts

• Manual deployment
• Environments are

manually provisioned

• Polling CI builds
• Any build can be

re-created from
source control

• Management of
build artifacts

• Automated
deployment scripts

• Automated
provisioning of
environments

• Commit hook CI builds
• Build fails if quality is not

met (code analysis,
performance, etc.)

• Push button deployment
and release of any
releasable artifact to any
environment

• Standard deployment
process for all
environments

• Team priorities keeping
codebase deployable over
doing new work

• Builds are not left broken
• Orchestrated deployments
• Blue Green Deployments

• Zero touch Continuous
Deployments

Release
• Infrequent and

unreliable releases
• Manual process

• Painful infrequent
but reliable
releases

• Infrequent but fully
automated and reliable
releases in any
environment

• Frequent fully automated
releases

• Deployment disconnected from
release

• Canary releases

• No rollbacks, always roll
forward

Data
Management

• Data migrations are
performed manually,
no scripts

• Data migrations
using versioned
scripts, performed
manually

• Automated and
versioned changes to
datastores

• Changes to datastores
automatically performed as part
of the deployment process

• Automatic datastore
changes and rollbacks
tested with every
deployment

Test &
Verification

• Automated unit tests
• Separate test

environment

• Automatic
Integration Tests

• Static code
analysis

• Test coverage
analysis

• Automatic functional
tests

• Manual performance/
security tests

• Fully automatic acceptance
tests

• Automatic performance/security
tests

• Manual exploratory testing
based on risk based testing
analysis

• Verify expected business
value

• Defects found and fixed
immediately (roll forward)

Information &
Reporting

• Baseline process
metrics

• Manual reporting
• Visible to report

runner

• Measure the
process

• Automatic reporting
• Visible to team

• Automatic generation of
release notes

• Pipeline traceability
• Reporting history
• Visible to cross-silo

• Report trend analysis
• Real time graphs on deployment

pipeline metrics

• Dynamic self-service of
information

• Customizable dashboards
• Cross-reference across

organizational boundaries

http://blog.arungupta.me/continuous-integration-delivery-deployment-maturity-model/

http://blog.arungupta.me/continuous-integration-delivery-deployment-maturity-model/

References

• github.com/javaee-samples/devops

http://github.com/arun-gupta/devops-javaee

