

Neutron networking with Red Hat Enterprise Linux OpenStack Platform

Nir Yechiel, Networking Technology Product Manager, OpenStack Red Hat

#redhat #rhsummit

Agenda

- Neutron refresher
- Deep dive into ML2/Open vSwitch
 - Focus on L2, DHCP, and L3
- Our partner ecosystem and other commercial plugins
- Overview of recent major enhancements
 - IPv6, L3 HA, Distributed Virtual Routing (DVR)
- Q&A

RHEL OpenStack Platform 6

Neutron Overview

What is Neutron?

- Fully supported and integrated OpenStack project
- Exposes an API for defining rich network configuration
- Offers multi-tenancy with self-service

What Neutron is not?

- Neutron does not implement the networks
 - Using the concept of plugins

The Plugin Matters...

- Feature set
- Scale
- Performance
- High Availability
- Manageability
- Network topology
- Traffic flow
- Operational tools

Neutron Key Features

- L2 connectivity
- IP Address Management
- Security Groups
- L3 routing
- External gateway, NAT and floating IPs
- Load balancing, VPN and firewall

Dashboard View

Dashboard View

Red Hat Neutron Focus

- ML2 with Open vSwitch Mechanism Driver (today)
 - Overlay networks with VXLAN
- ML2 with OpenDaylight Mechanism Driver (roadmap)
- Broad range of commercial partners

Neutron with ML2 and Open vSwitch

(Tenant networks, VXLAN)

#redhat #rhsummit

Refresher: Open vSwitch (OVS)

- Multi-layer software switch
- Included with RHEL OpenStack Platform
- Highlights:
 - Multi-threaded user space switching daemon for increased scalability
 - Support for wildcard flows in Kernel datapath
 - Kernel based hardware offload for GRE and VXLAN
 - OpenFlow and OVSDB management protocols

Refresher: Network Namespaces (ip netns)

- Multiple discrete copies of the networking stack in Linux
- Analogous to VRFs on network devices
- Make it possible to separate network domains
 - Interfaces, IP addresses, routing tables, iptable rules, sockets, etc.

ML2/OVS Plugin

- Software only solution, hardware agnostic
- Support for VLAN, GRE, and VXLAN dataplane
- Tenant routers and DHCP servers implemented as network namespaces
 - Recommended deployment is using the concept of Network Nodes

Main Components

- OVS L2 agent
- DHCP agent
- L3 agent
- Metadata agent and proxy
- Load balancing, VPN and firewall served by distinct plugins/agents

Common Deployment - Placement

Controller Nodes		Network Nodes		Compute Nodes	
Neutron server		L3 agent		OVS agent	
ML2 core plugin		Metadata agent		Open vSwitch	
Service plugins		DHCP agent			
OVS ML2 driver		Service agents			
		OVS agent			
		Open vSwitch			

Common Deployment - Networks

L2 Connectivity

Network Separation

• 802.1Q VLANs

- Require end-to-end provisioning
- Number of IDs: 4K (theoretically)
- VM MAC addresses typically visible in the network core
- Well known by network admins as well as the network equipment

Network Separation

• 802.1Q VLANs

- Require end-to-end provisioning
- Number of IDs: 4K (theoretically)
- VM MAC addresses typically visible in the network core
- Well known by network admins as well as the network equipment
- Overlay tunnels (GRE, VXLAN)
 - Decouple virtual networking from physical fabric
 - Network provides only IP transport
 - Various design and performance considerations
 - MAC to VTEP mapping, MTU, hardware offload, load sharing

Leaf/Spine with VLANs

Leaf/Spine with Overlays

L2 Connectivity

- Between VMs on the same Compute
 - Traffic is bridged locally using normal MAC learning
 - Each tenant gets a local VLAN ID
 - No need to leave 'br-int'

L2 - Compute Node

L2 Connectivity

- Between VMs on different Computes
 - OVS acts as the VTEP
 - Flow rules are installed on 'br-tun' to encapsulate the traffic with the correct VXLAN VNI

L2 - Compute Node

GRE/VXLAN - Tunnel Layout

- Tunnel creation -
 - L2 agent goes up and notifies Neutron server via RPC
 - Neutron notifies other nodes that a new node has joined
 - Tunnel is formed between the new node and every pre-existing node
- VXLAN IP Multicast control plane was not implemented in OVS
- Broadcast, unknown unicast and multicast are forwarded out all tunnels via multiple unicast packets
 - Optimization to this available using the I2-population driver

L2 Population Mechanism Driver

- Neutron service has full knowledge of the topology
 - MAC and IP of each Neutron port
 - The node (VTEP) that the port was scheduled on
- Forwarding tables are programmed beforehand
- Processing of ARPs can be further optimized
 - Reply from the local vSwitch instead of traversing the network

With L2 Population

Local ARP Response

- ARP messages are treated as normal broadcasts by default
 - Even with I2-pop enabled still need to traverse the network
- Enter ARP Responder
 - A new table is inserted into br-tun, to be used as an ARP table
 - The table is filled whenever new L2 pop address changes come in
 - Local switch construct an ARP Reply contains the MAC address of the remote VM

L2 Population with ARP Responder

Security Groups

Security Groups

- Per VM stateless ACLs
- Increased intra-subnet and inter-subnet security
- Default group drops all ingress traffic and allows all egress
- Current solution implemented with iptables
- User flow:
 - Assign VMs to groups
 - Specify filtering rules between groups
 - Can match based on IP addresses, ICMP codes, TCP/UDP ports, etc.

Security Groups

Manage Security Group Rules: standard

Security Group Rules

+ Add Rule X Delete Rules

	Direction	Ether Type	IP Protocol	Port Range	Remote	Actions		
	Ingress	-	ICMP	-1 (All ICMP)	0.0.0.0/0 (CIDR)	Delete Rule		
	Ingress	-	TCP	22 (SSH)	0.0.0.0/0 (CIDR)	Delete Rule		
	Ingress	-	TCP	80 (HTTP)	0.0.0.0/0 (CIDR)	Delete Rule		
	Ingress	-	TCP	443 (HTTPS)	0.0.0.0/0 (CIDR)	Delete Rule		
Displaying 4 items								

Security Groups - Compute Node

DHCP Service (IPv4)

DHCP

- IPv4 subnets are enabled with DHCP by default
- Neutron is the single source of truth
 - IP addresses are allocated by Neutron and reserved in the Neutron DB
- Standard DHCP is used to populate the information to VMs
 - UDP ports 67/68
 - DHCPDISCOVER, DHCPOFFER, DHCPREQUEST, DHCPACK
- Default solution implemented with Dnsmasq

DHCP - Network Node

#redhat #rhsummit

L3 Routing and NAT (IPv4)

Routing/NAT Features

- East/West routing
- VMs with public IP addresses (floating IPs)
 - Static stateless (1:1) NAT
- Default access to outside system
 - Dynamic stateful NAPT (aka SNAT)
- Implemented with Linux IP stack and iptables
 - Network namespaces with 'net.ipv4.ip_forward=1'

Routing - Network Node

Routing - Example

Routing - Example

Default SNAT -

-A quantum-I3-agent-snat -s 172.17.17.0/24 -j SNAT --to-source 192.168.101.2

Floating IP (1:1 NAT) -

-A quantum-I3-agent-float-snat -s 172.17.17.2/32 -j SNAT --to-source 192.168.101.3 -A quantum-I3-agent-PREROUTING -d 192.168.101.3/32 -j DNAT --to-destination 172.17.17.2

Neutron with Our

Commercial Partners

#redhat #rhsummit

Commercial Neutron Plugins

- Two main models:
 - **Software centric** hardware is general-purpose
 - Decouple virtual networking from physical "fabric"
 - e.g Midokura MidoNet, Nuage VSP, PLUMgrid ONS
 - Hardware centric specific network hardware is required
 - Ability to control and interact with the physical network
 - e.g Cisco ACI, Brocade VCS
- ML2 drivers, core plugins, advanced services

Certification at Red Hat

- Collaboration between Red Hat and technology partners
- Assure our customers that:
 - Technology stack has been tested and validated
 - Solution is fully supported by Red Hat and partners

Certification at Red Hat

• Covers two main areas:

- Validation that the product implements the right OpenStack interfaces
- Verification that the production version of RHEL OpenStack Platform stack is used, and that the product is not configured in a way that would invalidate support
- Current Certification for Neutron covers core plugins, ML2 drivers, and service plugins for LBaaS
 - Find out more at <u>https://access.redhat.com/certifications</u>

Our Neutron Ecosystem

Certified Neutron Plugins (RHEL OpenStack Platform 5)

- **Big Switch Networks** *Big Cloud Fabric*
- Brocade VCS
- CPLANE NETWORKS Dynamic Virtual Networks
- Cisco Nexus, N1KV, Application Policy Infrastructure Controller (APIC)
- Mellanox Embedded Switch
- Pluribus Networks Netvisor
- Midokura Midokura Enterprise MidoNet
- **NEC** Programmable Flow
- Nuage Virtualized Services Platform (VSP)
- PLUMgrid Open Networking Suite (ONS)
- One Convergence Network Virtualization and Service Delivery
- Radware Alteon LBaaS for OpenStack Neutron
- Avi Networks Cloud Application Delivery Platform (CADP)

Certified Neutron Plugins (RHEL OpenStack Platform 6)

- **Big Switch Networks** *Big Cloud Fabric*
- Brocade VCS
- **Cisco** Nexus, N1KV, Application Policy Infrastructure Controller (APIC)
- Midokura Midokura Enterprise MidoNet
- **NEC** *Programmable Flow*
- Nuage Virtualized Services Platform (VSP)
- PLUMgrid Open Networking Suite (ONS)
- Radware Alteon LBaaS for OpenStack Neutron
- Avi Networks Cloud Application Delivery Platform (In Progress)
- F5 BIG-IP OpenStack Neutron LBaaS (In Progress)
- Mellanox Embedded Switch (In Progress)

Recent Enhancements

IPv6

#redhat #rhsummit

Do You Need IPv6?

Source: https://twitter.com/SCOTTHOGG/status/603213942429601792

IPv6: The Basics

- No more broadcasts, no ARP
 - Neighbor Solicitation with ICMPv6 Neighbor Discovery
- Link Local addresses
 - Mandatory on each interface, start with FE80
 - Used for communication among IPv6 hosts on a link (no routing)
- Global Unicast addresses
 - Globally routed addresses, start with 2000:: /3
- Router is required for SLAAC, and for advertising default-route

IPv6: Address Assignment

- Static
- Stateless Address Autoconfiguration (RFC 4862)
 - Nodes listen for Router Advertisements (RA) messages
 - Create a Global Unicast IPv6 address by combining:
 - EUI-64 address
 - Link Prefix
- DHCPv6 (RFC 3315)
 - Stateless
 - Stateful

IPv6 with RHEL OpenStack Platform 6

- Two new Subnet attributes introduced:
 - **ipv6-ra-mode** determine who sends Router Advertisements
 - ipv6-address-mode determine how VM obtains IPv6 address, default gateway, and/or optional information
- VMs can obtain address via SLAAC or DHCPv6
 - Routers send out Router Advertisements (RAs)
 - Neutron can generate an address via EUI-64 specification
 - Implementation uses Dnsmasq and radvd
- Security Groups support IPv6

IPv6 with RHEL OpenStack Platform 6

- BYOA (bring your own address) model
 - Tenants are trusted to choose their own IPv6 addressing
- No NAT or floating IP support for IPv6
 - Assumption is that tenant are assigned with globally routed addresses
 - Neutron router is configured with a default gateway to external network

IPv6 - Network Node

L3 Agent HA

- L3 HA architecture based on keepalived/VRRP protocol
 - Supported since RHEL OpenStack Platform 6
- Designed to provide HA for centralized Network nodes

- Virtual Router Redundancy Protocol RFC 5798
 - Uses IP protocol number 112
 - Communicates via multicast 224.0.0.18
 - Master/Backup election based on priority
 - Virtual MAC in format 00-00-5E-00-01-XX

- Routers are scheduled on two or more Network nodes
- Internal HA network is created per tenant
 - Used to transport the VRRP messages
 - Hidden from tenant CLI and Dashboard
 - Uses the tenant default segmentation (e.g. VLAN, VXLAN)
- keepalived process is spawned per virtual router
 - HA group is maintained for each router
 - IPv4 Link Local addresses (default 169.254.192.0/18) are being used
 - Master/Backup are placed randomly

#redhat #rhsummit

Distributed Virtual Routing (Technology Preview)

What is DVR?

- Distributed east/west routing and floating IPs
 - L3 agents running on each and every compute node
 - Metadata agent distributed as well
- Default SNAT still centralized
- Implementation is specific to ML2 with OVS driver
- Fundamentally changes the deployment architecture
 - External network is required on Compute nodes for north/south connectivity

What's Next

- Role-based Access Control (RBAC) for networks
- Neutron quality of service (QoS)
- Pluggable IPAM
- IPv6 Prefix Delegation
- L3 HA + L2 Population
- L3 HA support for IPv6
- Stateful OVS firewall
- VLAN trunking into a VM

Don't forget to submit feedback using the Red Hat Summit app.

#redhat #rhsummit

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

redhat

#redhat #rhsummit