
Red Hat Gluster Storage Advanced Features: Lab Guide

Red Hat Gluster Storage Advanced Features Information

Technology/Product Red Hat Gluster Storage

Difficulty 4

Time 90 minutes

Prerequisites Fundamental understanding of gluster systems and processes, and familiarity
with the command interface.

In this lab you will...

• Explore the GlusterFS data layout and extended attributes

• Understand the structure of the volfiles

• Administer quotas on volumes and subdirectories

• Induce a data split brain and observe the effects

• Administer quorum and understand its actions

• Configure asynchronous geo-replication

• Take snapshots, observe the operations, and restore data

• Configure and understand disperse volumes (erasure coding)

BEFORE YOU BEGIN...

Presumptions:

You already know how to...

• Configure a brick backend LVM structure and filesystem

• Peer gluster nodes into a trusted pool

• Create gluster volumes

• Mount gluster volumes to a filesystem client and access data

And you're comfortable with the gluster concepts of...

• Distributed volumes

• Replicated volumes

• Self-heal

• Rebalance

Red Hat Summit
Labs

www.redhat.com Copyright © 2015 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks of Red Hat,

Inc., registered in other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

• Geo-replication

Know your lab:

• Most of the lab commands are executed on node n1. Where it is important that a command be executed on a different

node, the node hostname will be highlighted in green to call out the difference in the lab instructions.

• Some important things to observe in the output of lab commands are highlighted in yellow.

• Root Password: redhat

• Trusted Pool #1

• Nodes: n1 – n4

• IPs: 10.11.12.101 – 104

• Volume: rep01 – Distributed-Replicated Volume 2x2

• Brick Directories: /rhgs/bricks/rep01

• Client Mountpoint: /rhgs/client/rep01

• Pre-Populated Data: file001 – 100 (1MB each)

• Trusted Pool #2

• Nodes: n5 – n6

• IPs: 10.11.12.105 – 106

• Volume: srep01 – Distributed Volume

• Brick Directories: /rhgs/bricks/srep01

Disclaimer:

This is alpha-level code we're working with in the lab. Here be dragons.

LAB INSTRUCTIONS

The Magic .glusterfs Directory

Take a look inside...

[root@n1 ~]# ls /rhgs/bricks/rep01/.glusterfs

The DHT (Distribute Hash Translator) assigns hash values to files on a per-directory basis. We can view the

assigned value for a particular file in its metadata as the trusted.gfid value. Note that this metadata is only

visible from the brick view of the file, not from the client mount.

[root@n1 ~]# getfattr -d -m . -e hex /rhgs/bricks/rep01/file002

getfattr: Removing leading '/' from absolute path names

file: rhgs/bricks/rep01/file002

trusted.afr.dirty=0x000000000000000000000000

trusted.afr.rep01-client-0=0x000000000000000000000000

trusted.afr.rep01-client-1=0x000000000000000000000000

trusted.bit-rot.version=0x0200000000000000556cac8f0008d758

trusted.gfid=0x57ab4dd8afae41eda54f6ecba5985a6b

With the gfid from the extended attributes, we can locate the file within the brick's .glusterfs directory structure.

Files are stored by their gfid values in a directory hierarchy two levels deep. The first level directory is named for the

Copyright © 2015 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks of Red Hat,

Inc., registered in other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
www.redhat.com

first two characters of the gfid, and the second level directory for the second two characters of the gfid. The file is

then named for the complete gfid value in UUID format (8-4-4-4-12).

[root@n1 ~]# ls /rhgs/bricks/rep01/.glusterfs/57/ab/57ab4dd8-afae-41ed-a54f-6ecba5985a6b

This gfid file represents a hard link to the file in its structured location within the filesystem. We can prove this simply

with the find command. Note the matching inode numbers.

[root@n1 ~]# find /rhgs/bricks/rep01 -samefile /rhgs/bricks/rep01/\

.glusterfs/57/ab/57ab4dd8-afae-41ed-a54f-6ecba5985a6b | xargs ls -li

136 -rw-r--r-- 2 root root 1048576 Jun 1 15:08 /rhgs/bricks/rep01/file002

136 -rw-r--r-- 2 root root 1048576 Jun 1 15:08
/rhgs/bricks/rep01/.glusterfs/57/ab/57ab4dd8-afae-41ed-a54f-6ecba5985a6b

Volfiles

Gluster builds functionality by layering translators into a stack. Each translator is a piece of code that adds

incremental functionality or data transformation. The complete stack is stored as a volfile with a hierarchical

structure. The volfiles for different functions of Gluster can be viewed in the

/var/lib/glusterd/vols/<volname> directories.

[root@n1 ~]# ls /var/lib/glusterd/vols/rep01

The fuse volfile contains the stack to enable Gluster native client access to a volume. Note that we define four

client subvolumes, each of which representing an individual brick. Then the clients are grouped in pairs as

part of two defined replicate subvolumes. Then the replicates are grouped into one dht subvolume. This

hierarchy represents the base functionality of a distribute-replicate 2x2 volume. The remaining subvolumes in the

stack each add incremental functionality in the particular order they are defined. The last entry rep01 represents

the volume as it is presented to the client for consumption.

[root@n1 ~]# cat /var/lib/glusterd/vols/rep01/rep01.tcp-fuse.vol

volume rep01-client-0

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/rep01

 option remote-host n1

 option ping-timeout 42

end-volume

volume rep01-client-1

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/rep01

 option remote-host n2

 option ping-timeout 42

end-volume

volume rep01-client-2

 type protocol/client

Copyright © 2015 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks of Red Hat,

Inc., registered in other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
www.redhat.com

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/rep01

 option remote-host n3

 option ping-timeout 42

end-volume

volume rep01-client-3

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/rep01

 option remote-host n4

 option ping-timeout 42

end-volume

volume rep01-replicate-0

 type cluster/replicate

 subvolumes rep01-client-0 rep01-client-1

end-volume

volume rep01-replicate-1

 type cluster/replicate

 subvolumes rep01-client-2 rep01-client-3

end-volume

volume rep01-dht

 type cluster/distribute

 subvolumes rep01-replicate-0 rep01-replicate-1

end-volume

volume rep01-write-behind

 type performance/write-behind

 subvolumes rep01-dht

end-volume

volume rep01-read-ahead

 type performance/read-ahead

 subvolumes rep01-write-behind

end-volume

volume rep01-readdir-ahead

 type performance/readdir-ahead

 subvolumes rep01-read-ahead

end-volume

volume rep01-io-cache

 type performance/io-cache

 subvolumes rep01-readdir-ahead

end-volume

volume rep01-quick-read

 type performance/quick-read

 subvolumes rep01-io-cache

end-volume

volume rep01-open-behind

 type performance/open-behind

 subvolumes rep01-quick-read

end-volume

volume rep01-md-cache

 type performance/md-cache

 subvolumes rep01-open-behind

end-volume

volume rep01

 type debug/io-stats

 option count-fop-hits off

 option latency-measurement off

 subvolumes rep01-md-cache

end-volume

The Gluster native client stores a copy of the volfile in memory, and it records in its log file each time the volfile

changes.

[root@n1 ~]# grep -v '^\[' /var/log/glusterfs/rhgs-client-rep01.log

+--+

Final graph:

+--+

 1: volume rep01-client-0

 2: type protocol/client

 3: option ping-timeout 42

 4: option remote-host n1

 5: option remote-subvolume /rhgs/bricks/rep01

 6: option transport-type socket

 7: option username 960a3c99-d94e-4b15-9135-5f56aef9d63c

 8: option password 439b2bab-0984-471a-8af2-242c05e2c2a5

 9: option send-gids true

 10: end-volume

 …

Changing volume options may result in either a modification of an existing translator, or the insertion of a new

translator into the stack.

[root@n1 ~]# gluster volume set rep01 performance.open-behind on

volume set: success

[root@n1 ~]# gluster volume set rep01 cluster.quorum-type auto

volume set: success

[root@n1 ~]# gluster volume info rep01

Volume Name: rep01

Type: Distributed-Replicate

Volume ID: 6ff17d21-035d-47e7-8bd1-d4a9e850be31

Status: Started

Number of Bricks: 2 x 2 = 4

Transport-type: tcp

Bricks:

Brick1: n1:/rhgs/bricks/rep01

Brick2: n2:/rhgs/bricks/rep01

Brick3: n3:/rhgs/bricks/rep01

Brick4: n4:/rhgs/bricks/rep01

Options Reconfigured:

cluster.quorum-type: auto

performance.open-behind: on

performance.readdir-ahead: on

geo-replication.indexing: on

geo-replication.ignore-pid-check: on

changelog.changelog: on

[root@n1 ~]# grep -B5 -A1 open-behind /var/lib/glusterd/vols/rep01/rep01.tcp-fuse.vol

volume rep01-quick-read

 type performance/quick-read

 subvolumes rep01-io-cache

end-volume

volume rep01-open-behind

 type performance/open-behind

 subvolumes rep01-quick-read

end-volume

volume rep01-md-cache

 type performance/md-cache

 subvolumes rep01-open-behind

end-volume

[root@n1 ~]# grep -B2 -A2 quorum-type /var/lib/glusterd/vols/rep01/rep01.tcp-fuse.vol

volume rep01-replicate-0

 type cluster/replicate

 option quorum-type auto

 subvolumes rep01-client-0 rep01-client-1

end-volume

--

volume rep01-replicate-1

 type cluster/replicate

 option quorum-type auto

 subvolumes rep01-client-2 rep01-client-3

end-volume

IMPORTANT: Reset the volume options before continuing with the lab.

[root@n1 ~]# gluster volume reset rep01 force

volume reset: success: reset volume successful

Quotas

Note: Ensure the native client mount is active before continuing.

[root@n1 ~]# mount /rhgs/client/rep01

[root@n2 ~]# mount /rhgs/client/rep01

Quotas are set at the directory level, but can be made effectively volume-level by setting the quota at the volume

root. A client-created subdirectory must exist before a quota can be applied to it.

[root@n1 ~]# mkdir /rhgs/client/rep01/testdir

[root@n1 ~]# gluster volume quota rep01 enable

volume quota : success

[root@n1 ~]# gluster volume info rep01 | grep quota

features.inode-quota: on

features.quota: on

[root@n1 ~]# gluster volume quota rep01 limit-usage / 200MB

volume quota : success

[root@n1 ~]# gluster volume quota rep01 limit-usage /testdir 50MB

volume quota : success

[root@n1 ~]# gluster volume quota rep01 list

 Path Hard-limit Soft-limit Used Available Soft-
limit exceeded? Hard-limit exceeded?

/ 200.0MB 80% 101.0MB 99.0MB
No No

/testdir 50.0MB 80% 0Bytes 50.0MB
No No

Note that by default the root quota limit is not reflected as a size limit of the client mount point. To enable this

functionality, the quota-deem-statfs feature must turned on.

[root@n1 ~]# df -h /rhgs/client/rep01/

Filesystem Size Used Avail Use% Mounted on

n1:rep01 16G 167M 16G 2% /rhgs/client/rep01

[root@n1 ~]# gluster volume set rep01 features.quota-deem-statfs on

volume set: success

[root@n1 ~]# df -h /rhgs/client/rep01/

Filesystem Size Used Avail Use% Mounted on

n1:rep01 200M 101M 99M 51% /rhgs/client/rep01

The below commands from the quota_setup.sh script are for lab purposes only. Because we are testing with small

quotas on a distributed system with a fast network interlink between hosts, we need to enforce strict accounting by

reducing all timeouts to zero.

[root@n1 ~]# ~/quota_setup.sh

$ gluster volume set rep01 features.quota-timeout 0

volume set: success

$ gluster volume set rep01 features.hard-timeout 0

volume set: success

$ gluster volume set rep01 features.soft-timeout 0

volume set: success

Write enough data to our testdir to exceed the soft quota limit (default is 80%), and observe the effects. (The

quota1.sh script has been placed in /root for your convenience.)

[root@n1 ~]# ~/quota1.sh

$ dd if=/dev/urandom of=/rhgs/client/rep01/testdir/testfile01 bs=1k count=1k

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.199832 s, 5.2 MB/s

…

[root@n1 ~]# gluster volume quota rep01 list

 Path Hard-limit Soft-limit Used Available Soft-
limit exceeded? Hard-limit exceeded?

/ 200.0MB 80% 142.0MB 58.0MB
No No

/testdir 50.0MB 80% 41.0MB 9.0MB
Yes No

Now we'll exceed the hard limit and prove that quota is indeed working as expected, and the client receives the

appropriate EDQUOT error. The exception is recorded in both the brick and the client logs.

[root@n1 ~]# ~/quota2.sh

$ dd if=/dev/urandom of=/rhgs/client/rep01/testdir/testfile42 bs=1k count=1k

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.17068 s, 6.1 MB/s

…

dd: failed to open ‘/rhgs/client/rep01/testdir/testfile51’: Disk quota exceeded

dd: failed to open ‘/rhgs/client/rep01/testdir/testfile52’: Disk quota exceeded

…

[root@n1 ~]# gluster volume quota rep01 list

 Path Hard-limit Soft-limit Used Available Soft-
limit exceeded? Hard-limit exceeded?

/ 200.0MB 80% 151.0MB 49.0MB
No No

/testdir 50.0MB 80% 50.0MB 0Bytes
Yes Yes

[root@n1 ~]# grep exceeded /var/log/glusterfs/bricks/rhgs-bricks-rep01.log | tail -n1

[2015-06-02 19:15:56.829819] I [server-rpc-fops.c:1558:server_create_cbk] 0-rep01-server:
27585: CREATE /testdir/testfile69 (8180c1f2-b586-4f6c-9ad9-e83bf3d073c1/testfile69) ==>
(Disk quota exceeded)

[root@n1 ~]# grep exceeded /var/log/glusterfs/rhgs-client-rep01.log | tail -n1

[2015-06-02 19:15:56.838210] W [fuse-bridge.c:1970:fuse_create_cbk] 0-glusterfs-fuse:
472007: /testdir/testfile70 => -1 (Disk quota exceeded)

IMPORTANT: Reset the volume options before continuing with the lab.

[root@n1 ~]# gluster volume reset rep01 force

volume reset: success: reset volume successful

Split-Brain

In order to observe the complicated effects of a split-brain scenario, we will induce a network split between nodes n1

and n2, and then separately write to the same file on both nodes via the native client.

[root@n1 ~]# ~/split1.sh

Inducing split-brain with iptables…

$ iptables -F

$ iptables -A OUTPUT -d n2 -j DROP

Adding 1MB of random data to file002...

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.147373 s, 7.1 MB/s

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

5dc270754774cf733a97797a33dd9f82 /rhgs/client/rep01/file002

[root@n1 ~]# ls -lh /rhgs/client/rep01/file002

-rw-r--r-- 1 root root 2.1M Jun 2 15:52 /rhgs/client/rep01/file002

[root@n2 ~]# ~/split2.sh

Adding 2MB of random data to file002...

2048+0 records in

2048+0 records out

2097152 bytes (2.1 MB) copied, 0.281429 s, 7.5 MB/s

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

7e0064e6eeb04014f694b536228ca7d8 /rhgs/client/rep01/file002

[root@n2 ~]# ls -lh /rhgs/client/rep01/file002

-rw-r--r-- 1 root root 3.1M Jun 2 15:53 /rhgs/client/rep01/file002

We can observe in the file extended attributes on both bricks that each copy of file002 believes itself to be WISE

(pending no changes, but accusing it's replica peer of pending changes). This is not a conflict that Gluster can

automatically resolve because there is not enough information to determine which is the “good” copy of the data –

and in fact both copies may be good. Note from our review of the volfile above that the brick on host n1 is rep01-

client-0 and the brick on host n2 is rep01-client-1.

[root@n1 ~]# getfattr -d -m . -e hex /rhgs/bricks/rep01/file002 |grep afr.rep01

getfattr: Removing leading '/' from absolute path names

trusted.afr.rep01-client-0=0x000000000000000000000000

trusted.afr.rep01-client-1=0x0000003a0000000000000000

[root@n2 ~]# getfattr -d -m . -e hex /rhgs/bricks/rep01/file002 |grep afr.rep01

getfattr: Removing leading '/' from absolute path names

trusted.afr.rep01-client-0=0x0000001e0000000000000000

trusted.afr.rep01-client-1=0x000000000000000000000000

Each trusted.afr extended attribute has a value which is 24 hexadecimal digits. The first 8 digits represent the

changelog of data, the second 8 digits the changelog of metadata, and the last 8 digits the changelog of directory

entries. Values other than 0 indicate that changes of that type are expected to be pending for the brick indicated.

0x 000003d7 00000001 00000110

 | | |

 | | _ changelog of directory entries

 | _ changelog of metadata

 \ _ changelog of data

When the copies of the file disagree on the changelogs, each believing itself consistent but its peer pending

changes, the file is in a split-brain state and cannot be automatically healed without conceding to ignore one copy's

pending changes and accept the other's.

Resolving the network split, we can see that Gluster acknowledges the split-brain inconsistency in the file.

[root@n1 ~]# ~/split3.sh

Correcting network split with iptables...

$ iptables -F OUTPUT

Dropping caches due to BZ 1229226...

[root@n1 ~]# gluster volume heal rep01 info split-brain

Brick n1:/rhgs/bricks/rep01/

/file002

Number of entries in split-brain: 1

Brick n2:/rhgs/bricks/rep01/

/file002

Number of entries in split-brain: 1

Brick n3:/rhgs/bricks/rep01/

Number of entries in split-brain: 0

Brick n4:/rhgs/bricks/rep01/

Number of entries in split-brain: 0

When we attempt to read the split-brain file, Gluster returns EIO. This also triggers a message reported in the client

log file.

[root@n1 ~]# cat /rhgs/client/rep01/file002 > /dev/null

cat: /rhgs/client/rep01/file002: Input/output error

[root@n1 ~]# grep split /var/log/glusterfs/rhgs-client-rep01.log

[2015-06-11 22:21:55.757038] W [MSGID: 108008] [afr-read-txn.c:241:afr_read_txn] 0-rep01-
replicate-0: Unreadable subvolume -1 found with event generation 4. (Possible split-
brain)

If after troubleshooting the split and analyzing the data we decide that the copy on n1 is the one we want to keep,

we can resolve the split-brain manually on a per-file basis by clearing the appropriate trusted.afr flags. In this

case, we will clear the flags on the trusted.afr.rep01-client-0 attribute for file002 on n2. Doing this

clears n2's belief that the file on n1 is pending changes, and therefore allows the self-heal process to copy the file

over from n1 to n2.

[root@n2 ~]# setfattr -n trusted.afr.rep01-client-0 -v 0x000000000000000000000000 \

 /rhgs/bricks/rep01/file002

[root@n2 ~]# getfattr -d -m . -e hex /rhgs/bricks/rep01/file002 |grep afr.rep01

getfattr: Removing leading '/' from absolute path names

trusted.afr.rep01-client-0=0x000000000000000000000000

trusted.afr.rep01-client-1=0x000000000000000000000000

The file will be healed when either it it access via the client, or when the self-heal daemon passes over it.

[root@n2 ~]# ls -lh /rhgs/bricks/rep01/file002

-rw-r--r-- 1 root root 3.1M Jun 11 18:20 /rhgs/client/rep01/file002

[root@n2 ~]# cat /rhgs/client/rep01/file002 > /dev/null

[root@n2 ~]# ls -lh /rhgs/bricks/rep01/file002

-rw-r--r-- 2 root root 2.1M Jun 11 18:51 /rhgs/bricks/rep01/file002

IMPORTANT: Reset the split files before continuing.

[root@n1 ~]# ~/split_reset.sh

Flushing firewall...

$ iptables -F

Deleting split files...

$ rm -f /rhgs/bricks/rep01/file002

$ rm -f /rhgs/bricks/rep01/.glusterfs/7e/fd/7efdf29f-9d42-4307-95d1-972c87dd8299

Healing...

Regenerating file...

$ dd if=/dev/urandom of=/rhgs/client/rep01/file002 bs=1k count=1k

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.161904 s, 6.5 MB/s

Quorum – Server-Side

Server-side quorum is pool-aware only – it is not volume- or replica-aware. It attempts to enforce data consistency

by killing glusterfsd brick processes on non-quorate nodes.

[root@n1 ~]# gluster volume set rep01 cluster.server-quorum-type server

volume set: success

We observe that enabling server-side quorum does not prevent the same split-brain scenario we induced previously.

[root@n1 ~]# ~/split1.sh

Inducing split-brain with iptables…

$ iptables -F

$ iptables -A OUTPUT -d n2 -j DROP

Adding 1MB of random data to file002...

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.147373 s, 7.1 MB/s

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

5dc270754774cf733a97797a33dd9f82 /rhgs/client/rep01/file002

[root@n1 ~]# ls -lh /rhgs/client/rep01/file002

-rw-r--r-- 1 root root 2.1M Jun 2 15:52 /rhgs/client/rep01/file002

[root@n2 ~]# ~/split2.sh

Adding 2MB of random data to file002...

2048+0 records in

2048+0 records out

2097152 bytes (2.1 MB) copied, 0.281429 s, 7.5 MB/s

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

7e0064e6eeb04014f694b536228ca7d8 /rhgs/client/rep01/file002

[root@n2 ~]# ls -lh /rhgs/client/rep01/file002

-rw-r--r-- 1 root root 3.1M Jun 2 15:53 /rhgs/client/rep01/file002

In this situation, only one node out of four has lost contact, and so the default quorum minimum of 50% has not

been surpassed.

IMPORTANT: Reset the split files before continuing.

[root@n1 ~]# ~/split_reset.sh

Flushing firewall...

$ iptables -F

Deleting split files...

$ rm -f /rhgs/bricks/rep01/file002

$ rm -f /rhgs/bricks/rep01/.glusterfs/7e/fd/7efdf29f-9d42-4307-95d1-972c87dd8299

Healing...

Regenerating file...

$ dd if=/dev/urandom of=/rhgs/client/rep01/file002 bs=1k count=1k

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.161904 s, 6.5 MB/s

This time we induce a network split that will exceed the threshold and cause the quorum enforcement to kick in.

[root@n1 ~]# ~/split1a.sh

Inducing network split with iptables...

$ iptables -F

$ iptables -A OUTPUT -d n2 -j DROP

$ iptables -A OUTPUT -d n3 -j DROP

Sleeping for 1 minute...

$ sleep 60

Adding 1MB of random data to file002...

./split1a.sh: line 12: /rhgs/client/rep01/file002: No such file or directory

** You should have received a "No such file or directory" error above... **

We observe that the brick process on n1 has been killed.

[root@n1 ~]# ps -ef | grep glusterfsd | grep -v grep

The glusterd log file shows us that a loss of quorum was observed and acted on by killing the local bricks.

[root@n1 ~]# grep quorum /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

…

[2015-06-08 15:51:57.558778] C [MSGID: 106002] [glusterd-server-
quorum.c:356:glusterd_do_volume_quorum_action] 0-management: Server quorum lost for
volume rep01. Stopping local bricks.

We also observe that the client can now only see the files available from the brick on n4, since n2 and n3 are out-of-

contact and the local brick on n1 is dead.

[root@n1 ~]# ls /rhgs/client/rep01/

file000 file012 file017 file030 file040 file048 file061 file080 file090 file098

file001 file013 file018 file032 file042 file049 file073 file081 file093 testdir

file003 file014 file022 file033 file044 file050 file075 file085 file095

file006 file015 file025 file034 file046 file052 file076 file088 file096

file007 file016 file026 file036 file047 file053 file078 file089 file097

Flushing the iptables rules and waiting a few moments, we see quorum regained and the brick restarted.

[root@n1 ~]# ~/split3.sh

Correcting network split with iptables...

$ iptables -F OUTPUT

Dropping caches due to BZ 1229226...

[root@n1 ~]# ps -ef | grep glusterfsd | grep -v grep

root 15062 1 0 12:05 ? 00:00:00 /usr/sbin/glusterfsd -s n1 --volfile-id
rep01.n1.rhgs-bricks-rep01 -p /var/lib/glusterd/vols/rep01/run/n1-rhgs-bricks-rep01.pid
-S /var/run/gluster/720b9371db42f41c2c417722306fb4bf.socket --brick-name
/rhgs/bricks/rep01 -l /var/log/glusterfs/bricks/rhgs-bricks-rep01.log --xlator-option *-
posix.glusterd-uuid=e300ada3-5157-49a9-9100-e662c2a617df --brick-port 49152 --xlator-
option rep01-server.listen-port=49152

[root@n1 ~]# grep quorum /var/log/glusterfs/etc-glusterfs-glusterd.vol.log

…

[2015-06-08 16:05:02.430800] C [MSGID: 106003] [glusterd-server-
quorum.c:351:glusterd_do_volume_quorum_action] 0-management: Server quorum regained for
volume rep01. Starting local bricks.

IMPORTANT: Reset the volume options before continuing with the lab.

[root@n1 ~]# gluster volume reset rep01 force

volume reset: success: reset volume successful

Quorum – Client-Side

Client-side quorum is more intelligent, with an awareness of the volume layout and replica peers.

[root@n1 ~]# gluster volume set rep01 cluster.quorum-type auto

volume set: success

We observe that enabling client-side quorum allows the write from n1 to proceed during the split.

[root@n1 ~]# ~/split1.sh

Inducing network split with iptables...

$ iptables -F

$ iptables -A OUTPUT -d n2 -j DROP

Adding 1MB of random data to file002...

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.163652 s, 6.4 MB/s

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

01a3abda9270b4d15f49d32d4145f72c /rhgs/client/rep01/file002

However, the write from n2 is blocked with the filesystem set to read-only.

[root@n2 ~]# ~/split2.sh

Adding 2MB of random data to file002...

dd: error writing ‘standard output’: Read-only file system

dd: closing output file ‘standard output’: Read-only file system

Generating md5sum for file002...

$ md5sum /rhgs/client/rep01/file002

8b5207d8cc2f6df5b2e29166bc27bd72 /rhgs/client/rep01/file002

In this case, because the brick on n1 is the first defined member of the replica pair of n1:/rhgs/bricks/rep01

and n2:/rhgs/bricks/rep01, it receives an extra weight or vote in the quorum calculation. This default behavior

allows for one member of a brick pair to remain in a read-write state even during a split.

Unlike server-side quorum where all access to a portion of the data is lost, client-side quorum allows for continued

access that is degraded to read-only on one side of the split.

We observe that the logging is similar to server-side quorum, but is recorded in the client log files and only on node

n2 where the quorum was enforced.

[root@n2 ~]# grep quorum /var/log/glusterfs/rhgs-client-rep01.log

…

[2015-06-08 16:35:06.112351] W [MSGID: 108001] [afr-common.c:3963:afr_notify] 0-rep01-
replicate-0: Client-quorum is not met

Flushing the iptables rules on n1 and waiting a few moments, we see quorum regained and the client on node n2

regains read-write access to the data..

[root@n1 ~]# ~/split3.sh

Correcting network split with iptables...

$ iptables -F OUTPUT

Dropping caches due to BZ 1229226...

[root@n2 ~]# grep quorum /var/log/glusterfs/rhgs-client-rep01.log

…

[2015-06-08 16:50:50.802194] I [MSGID: 108002] [afr-common.c:3959:afr_notify] 0-rep01-
replicate-0: Client-quorum is met

[root@n2 ~]# touch /rhgs/client/rep01/file002

Geo-Replication

Geo-replication provides asynchronous one-way replication to one or more remote Gluster volumes. The replication

is negotiated, with one member of each synchronous replica set acting as an active sender and the others acting as

passive failover members. Data is geo-replicated in parallel from all synchronous replica sets.

Note that initial configuration of security credentials and setup of the receiving slave volume has already been

completed on your lab nodes.

[root@n1 ~]# gluster volume geo-replication rep01 n5::srep01 create push-pem

Creating geo-replication session between rep01 & n5::srep01 has been successful

[root@n1 ~]# gluster volume geo-replication rep01 status

MASTER NODE MASTER VOL MASTER BRICK SLAVE USER SLAVE
SLAVE NODE STATUS CRAWL STATUS LAST_SYNCED

n1 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Created N/A N/A

n4 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Created N/A N/A

n3 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Created N/A N/A

n2 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Created N/A N/A

We start the geo-replication and immediately run a watch on the status command in order to observe the

members in the Initializing state, and then progressing through Hybrid Crawl and Changelog Crawl.

[root@n1 ~]# gluster volume geo-replication rep01 n5::srep01 start &&

 watch -n .5 gluster volume geo-replication rep01 n5::srep01 status

Starting geo-replication session between rep01 & n5::srep01 has been successful

MASTER NODE MASTER VOL MASTER BRICK SLAVE USER SLAVE
SLAVE NODE STATUS CRAWL STATUS LAST_SYNCED

n1 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Initializing... N/A N/A

n2 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Initializing... N/A N/A

n4 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Initializing... N/A N/A

n3 rep01 /rhgs/bricks/rep01 root ssh://n5::srep01 N/A
Initializing... N/A N/A

IMPORTANT: Stop geo-replication before continuing with the lab.

[root@n1 ~]# gluster volume geo-replication rep01 n5::srep01 stop

Stopping geo-replication session between rep01 & n5::srep01 has been successful

Snapshots

Snapshots provide point-in-time copies of Red Hat Gluster Storage volumes. Snaps are created as copy-on-write

and take advantage of thin provisioning technology, allowing for near-instantaneous creation.

Volume snapshots rely on an orchestration of LVM snapshots across all bricks in a volume. As such, certain steps

must be taken when creating bricks in order to enable snapshot functionality.

We explore the LVM configuration on our lab nodes to observe the minimum requirements. Note that a thin pool LV

has been created as rhgs_pool, and then a thin LV rhgs_lv has been allocated a portion of the pool data (in this

case, 100%). Because this is thin provisioning, the thin LV could be allocated any amount of space, even if it

exceeds the thin pool space.

[root@n1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
Convert

 root rhel -wi-ao---- 4.40g

 swap rhel -wi-ao---- 512.00m

 rhgs_lv rhgs_vg Vwi-aot--- 8.00g rhgs_pool 0.81

 rhgs_pool rhgs_vg twi-aot--- 8.00g 0.81 0.02

A volume snapshot is created online and is non-disruptive to the clients.

[root@n1 ~]# gluster snapshot create snap01 rep01

snapshot create: success: Snap snap01_GMT-2015.06.09-19.08.34 created successfully

The new snapshot LVs are created for each brick and automatically mounted.

[root@n1 ~]# lvs

 LV VG Attr LSize Pool Origin Data%
Meta% Move Log Cpy%Sync Convert

 root rhel -wi-ao---- 4.40g

 swap rhel -wi-ao---- 512.00m

 a9aa400404a8477b89823c51bbebeb91_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.21

 rhgs_lv rhgs_vg Vwi-aot--- 8.00g rhgs_pool 1.21

 rhgs_pool rhgs_vg twi-aot--- 8.00g 1.24
0.02

[root@n1 ~]# df -h | grep snaps

/dev/mapper/rhgs_vg-a9aa400404a8477b89823c51bbebeb91_0 8.0G 118M 7.9G 2%
/run/gluster/snaps/a9aa400404a8477b89823c51bbebeb91/brick1

Several administrative commands are available to give us information about the snapshots.

[root@n1 ~]# snap01=`gluster snapshot list rep01 | grep snap01`

[root@n1 ~]# gluster snapshot info $snap01

Snapshot : snap01_GMT-2015.06.11-23.06.26

Snap UUID : 86716030-c258-4643-9e22-53b646e62d6c

Created : 2015-06-11 23:06:26

Snap Volumes:

Snap Volume Name : a9aa400404a8477b89823c51bbebeb91

Origin Volume name : rep01

Snaps taken for rep01 : 1

Snaps available for rep01 : 255

Status : Stopped

[root@n1 ~]# gluster snapshot status $snap01

Snap Name : snap01_GMT-2015.06.11-23.06.26

Snap UUID : 86716030-c258-4643-9e22-53b646e62d6c

Brick Path :
n1:/run/gluster/snaps/a9aa400404a8477b89823c51bbebeb91/brick1/rep01

Volume Group : rhgs_vg

Brick Running : No

Brick PID : N/A

Data Percentage : 1.21

LV Size : 8.00g

Brick Path :
n2:/run/gluster/snaps/a9aa400404a8477b89823c51bbebeb91/brick2/rep01

Volume Group : rhgs_vg

Brick Running : No

Brick PID : N/A

Data Percentage : 1.26

LV Size : 8.00g

Brick Path :
n3:/run/gluster/snaps/a9aa400404a8477b89823c51bbebeb91/brick3/rep01

Volume Group : rhgs_vg

Brick Running : No

Brick PID : N/A

Data Percentage : 0.96

LV Size : 8.00g

Brick Path :
n4:/run/gluster/snaps/a9aa400404a8477b89823c51bbebeb91/brick4/rep01

Volume Group : rhgs_vg

Brick Running : No

Brick PID : N/A

Data Percentage : 0.96

LV Size : 8.00g

Writing new files to the rep01 volume we can observe the copy-on-write functionality. Note that we have consumed

additional real data blocks in the thin pool, and additional delta blocks in the thin LV. (You may need to wait a few

moments before the changes appear in the lvs output.)

[root@n1 ~]# ~/snap1.sh

$ dd if=/dev/urandom of=/rhgs/client/rep01/newfile001 bs=1k count=1k

1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.14492 s, 7.2 MB/s

…

[root@n1 ~]# lvs

 LV VG Attr LSize Pool Origin Data%
Meta% Move Log Cpy%Sync Convert

 root rhel -wi-ao---- 4.40g

 swap rhel -wi-ao---- 512.00m

 a9aa400404a8477b89823c51bbebeb91_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.21

 rhgs_lv rhgs_vg Vwi-aot--- 8.00g rhgs_pool 1.52

 rhgs_pool rhgs_vg twi-aot--- 8.00g 1.60
0.02

We create a second snapshot to capture our new files.

[root@n1 ~]# gluster snapshot create snap02 rep01

snapshot create: success: Snap snap02_GMT-2015.06.09-19.46.17 created successfully

Deleting files from the volume, we see perhaps an unexpected effect – Data is not freed from the thin LV or pool.

[root@n1 ~]# ~/snap2.sh

$ rm -f /rhgs/client/rep01/newfile001

$ rm -f /rhgs/client/rep01/newfile002

$ rm -f /rhgs/client/rep01/newfile003

…

[root@n1 ~]# lvs

 LV VG Attr LSize Pool Origin Data%
Meta% Move Log Cpy%Sync Convert

 root rhel -wi-ao---- 4.40g

 swap rhel -wi-ao---- 512.00m

 6bc6d46eecca4123b1ff55a4afbbb07d_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.52

 a9aa400404a8477b89823c51bbebeb91_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.21

 rhgs_lv rhgs_vg Vwi-aot--- 8.00g rhgs_pool 1.52

 rhgs_pool rhgs_vg twi-aot--- 8.00g 1.67
0.02

In order to reclaim the blocks, the fstrim command must be run. Note that this would need to be run for all brick

mount points in order to reclaim all space across the volume.

[root@n1 ~]# fstrim -v /rhgs/bricks/rep01/

/rhgs/bricks/rep01/: 8 GiB (8520302592 bytes) trimmed

[root@n1 ~]# lvs

 LV VG Attr LSize Pool Origin Data%
Meta% Move Log Cpy%Sync Convert

 root rhel -wi-ao---- 4.40g

 swap rhel -wi-ao---- 512.00m

 6bc6d46eecca4123b1ff55a4afbbb07d_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.52

 a9aa400404a8477b89823c51bbebeb91_0 rhgs_vg Vwi-aot--- 8.00g rhgs_pool rhgs_lv 1.21

 rhgs_lv rhgs_vg Vwi-aot--- 8.00g rhgs_pool 1.18

 rhgs_pool rhgs_vg twi-aot--- 8.00g 1.67
0.02

As an admin, we can mount the snapshot volume for read access to restore any needed data. Note the snap is

mounted as read-only.

[root@n1 ~]# snap02=`gluster snapshot list rep01 | grep snap02`

[root@n1 ~]# gluster snapshot activate $snap02

Snapshot activate: snap02_GMT-2015.06.09-19.46.17: Snap activated successfully

[root@n1 ~]# mkdir /rhgs/client/snap02

[root@n1 ~]# mount -t glusterfs n1:/snaps/$snap02/rep01 /rhgs/client/snap02

[root@n1 ~]# mount | grep snap02

n1:/snaps/snap02_GMT-2015.06.09-19.46.17/rep01 on /rhgs/client/snap02 type fuse.glusterfs
(ro,relatime,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072)

[root@n1 ~]# ls /rhgs/client/snap02/newfile001

/rhgs/client/snap02/newfile001

For a more convenient method to access snapshot data, we can enable the user-serviceable snapshot feature for

the volume. Activated snapshots are available via a hidden .snaps directory on the client in each subdirectory of the

snapshot volume.

[root@n1 ~]# gluster volume set rep01 features.uss enable

volume set: success

[root@n1 ~]# ls /rhgs/client/rep01/.snaps/$snap02/newfile001

/rhgs/client/rep01/.snaps/snap02_GMT-2015.06.09-19.46.17/newfile001

Disperse Volumes (Erasure Coding)

Erasure coding allows for data protection through dispersed redundancy across the bricks in a volume. It uses a

configurable level of redundancy, relying on parity, similar to RAID 5/6, to rebuild data in the case of a loss.

Disperse volumes allow for a more efficient use of storage than replicate volumes, with potentially more redundancy.
They also allow us to move data protection from a lower level in the storage stack up to the Gluster level, freeing us
from proprietary RAID technology and allowing for further simplification of the commodity hardware stack.

When creating a disperse volume, we define the number of data (disperse) bricks and the number of parity
(redundancy) bricks. The disperse count is the total number of data chunks that we will divide files into. The
redundancy count is the number of the total data chunks we will treat as parity. Data can be reconstructed from
(disperse count) – (redundancy count) bricks.

This type of volume does introduce additional overhead as parity calculations have to be made for reads and writes.
It also breaks up individual file data, meaning that a whole file cannot be accessed via an offline brick.

Note that in our lab we will create 2 bricks on each of nodes n1 and n2 for our disperse volume. This allows us to
create an optimal disperse volume, which cannot mathematically be accomplished with only 4 bricks. Because of

this, we must append the force flag to the volume create command.

We create a 6/2 disperse volume. With this configuration, 6 bricks participate in the volume, and any 4 (6-2) of the

bricks must be available in order to access the data. (The mkecvol.sh script has been provided for your

convenience to avoid any typos in the long command.)

[root@n1 ~]# ~/mkecvol.sh

Creating ec01 volume...

$ gluster volume create ec01 disperse 6 redundancy 2 n1:/rhgs/bricks/ec01-1
n2:/rhgs/bricks/ec01-1 n3:/rhgs/bricks/ec01-1 n4:/rhgs/bricks/ec01-1
n1:/rhgs/bricks/ec01-2 n2:/rhgs/bricks/ec01-2 force

volume create: ec01: success: please start the volume to access data

[root@n1 ~]# gluster volume start ec01

volume start: ec01: success

[root@n1 ~]# gluster volume info ec01

Volume Name: ec01

Type: Disperse

Volume ID: f9f8d1d8-10d0-48cf-8292-a03860296b80

Status: Started

Number of Bricks: 1 x (4 + 2) = 6

Transport-type: tcp

Bricks:

Brick1: n1:/rhgs/bricks/ec01-1

Brick2: n2:/rhgs/bricks/ec01-1

Brick3: n3:/rhgs/bricks/ec01-1

Brick4: n4:/rhgs/bricks/ec01-1

Brick5: n1:/rhgs/bricks/ec01-2

Brick6: n2:/rhgs/bricks/ec01-2

Options Reconfigured:

performance.readdir-ahead: on

Examining the vol file for the ec01 volume, we can see better how the disperse volume is assembled in the

translator stack.

[root@n1 ~]# cat /var/lib/glusterd/vols/ec01/ec01.tcp-fuse.vol

volume ec01-client-0

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-1

 option remote-host n1

 option ping-timeout 42

end-volume

volume ec01-client-1

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-1

 option remote-host n2

 option ping-timeout 42

end-volume

volume ec01-client-2

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-1

 option remote-host n3

 option ping-timeout 42

end-volume

volume ec01-client-3

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-1

 option remote-host n4

 option ping-timeout 42

end-volume

volume ec01-client-4

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-2

 option remote-host n1

 option ping-timeout 42

end-volume

volume ec01-client-5

 type protocol/client

 option send-gids true

 option transport-type tcp

 option remote-subvolume /rhgs/bricks/ec01-2

 option remote-host n2

 option ping-timeout 42

end-volume

volume ec01-disperse-0

 type cluster/disperse

 option redundancy 2

 subvolumes ec01-client-0 ec01-client-1 ec01-client-2 ec01-client-3 ec01-client-4
ec01-client-5

end-volume

volume ec01-dht

 type cluster/distribute

 subvolumes ec01-disperse-0

end-volume

volume ec01-write-behind

 type performance/write-behind

 subvolumes ec01-dht

end-volume

volume ec01-read-ahead

 type performance/read-ahead

 subvolumes ec01-write-behind

end-volume

volume ec01-readdir-ahead

 type performance/readdir-ahead

 subvolumes ec01-read-ahead

end-volume

volume ec01-io-cache

 type performance/io-cache

 subvolumes ec01-readdir-ahead

end-volume

volume ec01-quick-read

 type performance/quick-read

 subvolumes ec01-io-cache

end-volume

volume ec01-open-behind

 type performance/open-behind

 subvolumes ec01-quick-read

end-volume

volume ec01-md-cache

 type performance/md-cache

 subvolumes ec01-open-behind

end-volume

volume ec01

 type debug/io-stats

 option count-fop-hits off

 option latency-measurement off

 subvolumes ec01-md-cache

end-volume

We mount ec01 volume via the native client, write some data, and observe the data placement.

[root@n1 ~]# ~/ec1.sh

Creating client mountpoint...

$ mkdir -p /rhgs/client/ec01

Mounting ec01 volume...

$ mount -t glusterfs n1:ec01 /rhgs/client/ec01

Writing plain-text data to file dirs.txt

[root@n1 ~]# file /rhgs/client/ec01/dirs.txt

/rhgs/client/ec01/dirs.txt: ASCII text

[root@n1 ~]# head /rhgs/client/ec01/dirs.txt

/

/boot

/boot/grub2

/boot/grub2/themes

/boot/grub2/themes/system

/boot/grub2/i386-pc

/boot/grub2/locale

/boot/grub2/fonts

/dev

[root@n1 ~]# file /rhgs/bricks/ec01-1/dirs.txt

/rhgs/bricks/ec01-1/dirs.txt: data

Removing access to two of the bricks, we see that the client can still read the data.

[root@n1 ~]# ~/ec2.sh

Blocking access to n3 and n4 with iptables...

$ iptables -F

$ iptables -A OUTPUT -d n3 -j DROP

$ iptables -A OUTPUT -d n4 -j DROP

[root@n1 ~]# head /rhgs/client/ec01/dirs.txt

/

/boot

/boot/grub2

/boot/grub2/themes

/boot/grub2/themes/system

/boot/grub2/i386-pc

/boot/grub2/locale

/boot/grub2/fonts

/dev

[root@n1 ~]# grep disperse /var/log/glusterfs/rhgs-client-ec01.log | tail -2

[2015-06-12 16:57:33.021348] W [ec-common.c:403:ec_child_select] 0-ec01-disperse-0:
Executing operation with some subvolumes unavailable (4)

[2015-06-12 16:57:33.025359] W [ec-common.c:121:ec_heal_report] 0-ec01-disperse-0: Heal
failed (error 107)

Writing additional data to the file, we observe the pending heal.

[root@n1 ~]# echo "new data" >> /rhgs/client/ec01/dirs.txt

[root@n1 ~]# gluster volume heal ec01 info

Brick n1:/rhgs/bricks/ec01-1/

/dirs.txt

Number of entries: 1

Brick n2:/rhgs/bricks/ec01-1/

/dirs.txt

Number of entries: 1

Brick n3:/rhgs/bricks/ec01-1

Status: Transport endpoint is not connected

Brick n4:/rhgs/bricks/ec01-1

Status: Transport endpoint is not connected

Brick n1:/rhgs/bricks/ec01-2/

/dirs.txt

Number of entries: 1

Brick n2:/rhgs/bricks/ec01-2/

/dirs.txt

Number of entries: 1

[root@n1 ~]# getfattr -d -m . -e hex /rhgs/bricks/ec01-1/dirs.txt

getfattr: Removing leading '/' from absolute path names

file: rhgs/bricks/ec01-1/dirs.txt

trusted.bit-rot.version=0x0200000000000000557afa920002b7eb

trusted.ec.config=0x0000080602000200

trusted.ec.dirty=0x00000000000000020000000000000002

trusted.ec.size=0x000000000006c369

trusted.ec.version=0x00000000000000330000000000000035

trusted.gfid=0x1ab0e229ec8548f8bc08dcb7c3874408

Restoring the network connections and touching the file, we observe that the heal is triggered and the file is no

longer dirty.

[root@n1 ~]# ./ec3.sh

Flushing iptables rules...

$ iptables -F

Restarting gluster services due to BZ 1231334...

$ pkill glusterfs

$ pkill glusterfsd

$ mount -a

$ service glusterd restart

Redirecting to /bin/systemctl restart glusterd.service

$ mount -t glusterfs n1:ec01 /rhgs/client/ec01

[root@n1 ~]# file /rhgs/client/ec01/dirs.txt

/rhgs/client/ec01/dirs.txt: ASCII text

[root@n1 ~]# getfattr -d -m . -e hex /rhgs/bricks/ec01-1/dirs.txt

getfattr: Removing leading '/' from absolute path names

file: rhgs/bricks/ec01-1/dirs.txt

trusted.bit-rot.version=0x0200000000000000557b1a64000b0287

trusted.ec.config=0x0000080602000200

trusted.ec.dirty=0x00000000000000000000000000000000

trusted.ec.size=0x000000000006c4dd

trusted.ec.version=0x00000000000000550000000000000055

trusted.gfid=0x60d0c42e23a44dd99076ddfbde525e8e

