ACCELERATING DEVOPS
THROUGH OPENSHIFT
BY RED HAT

Trevor Quinn
PaaS and DevOps Practice Lead, North America
Red Hat Consulting

RED HAT

SUMMIT
<« redhat

Agenda

o Current IT Landscape

o Traditional IT organization

o State of DevOps

o Cloud automation

o Application lifecycle automation
o Demo

CURRENT IT LANDSCAPE

-« redhat

Customers

ATIO0
000110
0001011
N10001)
Q000

OOO00

Ubiquitous, timely access to data

Enterprises

SEpyEs
”
L1 11
L1 11
L1 11 _Llll_l_
L1 11
EEjju= Smaller, innovative startups

armed with cloud tech

Increased quality

Rapid delivery of product
features and service

Better market fit

Doing more with less

TRADITIONALIT
ORGANIZATION

-« redhat

EXPECTATIONS INSIDE IT ORGANIZATIONS

O O
ﬁ?@ 3
LINES OF BUSINESS DEVELOPERS
Responsive Delivery Autonomy, Ability to Focus
O
3 gk
QA OPERATIONS

Testability Stability

EXPECTATIONS INSIDE IT ORGANIZATIONS

Ops teams are not
required in
application design Production environments
Software should discussions. are provisioned/
never break. through a mostly
manual process.

You have to give a
Developers should lot of lead time for ication i
not have any access getting an application An application is

to the production environment. deployed to production
environment. after all development

is complete.

Deployments are a
headache-software is We cannot keep
deployed using a deploying code to
mostly manual process. production on a
reqular basis.

"THROW IT OVER THE WALL"

Walled off people, processes, and technology

N YN
yIrh. [©X@)

DEVELOPERS QA s OPERATIONS

Opportunities to improve at the system level are potentially lost

STATE OF DEVOPS

-« redhat

DEVOPS LINEAGE

Agile
Development

L)

Cloud

Automation

Fall

Continuous
Delivery

@®

Cultural
Change

DEVOPS

INITIAL =) |MPROVED =) OPTIMIZING

INITIAL =) |MPROVED =) OPTIMIZING

CLOUD AUTOMATION

-« redhat

CLOUD COMPUTING

o on-demand self service
o broad network access
O resource pooling

o rapid elasticity

O measured service

(NIST Definition of Cloud Computing)

CLOUD SERVERS

JEHEyY =5

Ephemeral Anonymous Multitenant

Cloud automation is

DevOps technology.

LEVELS OF AUTOMATION

ﬁ APPLICATION LIFE CYCLE AUTOMATION
© Application

@
@ ©

44}9 APPLICATION PLATFORM AUTOMATION
&b Containers | Web/app servers | Libraries

- INFRASTRUCTURE AUTOMATION

Container Host | Virtualization | OS | Bare metal

LEVELS OF AUTOMATION

APPLICATION LIFE CYCLE AUTOMATION
Application

APPLICATION PLATFORM AUTOMATION
Containers | Web/app servers | Libraries

INFRASTRUCTURE AUTOMATION

Provisioning resources operating Typical use cases

system and down * Developers, testers, and ops teams requesting VMs

Operating systems « Allocating compute power to your applications during
Network peak load times

Disk and storage Dynamically adding storage based on consumption

CPU, RAM, and compute Compute governance policies and automatic set up
and tear down of resources

Typically provided by laaS Utility-based consumption models, pay what you use

capabilities such as OpenStack Does not include application platforms (only VM
and down)

Virtualization - Limitations Standard operating environment

LEVELS OF AUTOMATION

APPLICATION LIFE CYCLE AUTOMATION
Application

APPLICATION PLATFORM AUTOMATION

Provisioning middleware platforms Typical use cases
» Load balancers * Developers, testers, and ops teams
« Application servers requesting middleware platforms

« Java/JDK environments Auto-scaling

« Stand-alone frameworks Compute governance policies and
automatic set up and tear

. . . down of resources
Typically provided by container R timizati
orchestration and Paa$ capabilities £SOUICEIOPUITIZEEION
such as OpenShift Standard operating environment

INFRASTRUCTURE AUTOMATION
Container Host | Virtualization | OS | Bare metal

LEVELS OF AUTOMATION

- APPLICATION LIFE CYCLE AUTOMATION

Application life cycle

» Software features, enhancements, versions

» Version control, builds, IDE integration, continuous integration, release management
« Common frames of references for monitoring

Typical use cases
» Continuous integration
» Continuous delivery

» Automated testing

APPLICATION PLATFORM AUTOMATION

Containers | Web/app servers | Libraries

INFRASTRUCTURE AUTOMATION
Container Host | Virtualization | OS | Bare metal

m <&

Self-Service 0 . Standards
: Based

Multi-Language Web Scale

Automation Open Source

OPENSHIFT

by Red Hat

Collaboration

APPLICATION LIFECYCLE
MANAGEMENT

-« redhat

APPLICATION LIFECYCLE MANAGEMENT

CONFIGURATION AND AUTOMATED CONTINUOUS MANAGEMENT/ DEPLOYMENT
CHANGE MANAGEMENT TESTING INTEGRATION MONITORING PIPELINES

CONFIGURATION MANAGEMENT

Definition

All artifacts relevant to the
project, and the
relationships between
them, are stored, retrieved,
uniquely identified, and
modified. (Humble and
Farley, 2011)

Benefits

Allows you to exactly reproduce an entire
environment (OS, system configuration,
application server, server configuration,
application, etc.)

O Trace changes
O Rollback an environment to earlier working
state

Tools

Version control and library repositories

CONFIGURATION MANAGEMENT
WITH OPENSHIFT

Images as Managed Artifacts

S

APPLICATION SERVER

CONFIGURATION

REGISTRY

CONFIGURATION MANAGEMENT
WITH OPENSHIFT

Application Topology as Managed Artifact

APPLICATION
TOPOLOGY

GATEWAY SERVICE (HA)

PROCESSOR PROCESSOR
SERVICE A (HA) SERVICE X (HA)

CAPTURED AS...

TEMPLATE

TEXT FILE

'

MANAGED
—

ENTERPRISE SOURCE
REPOSITORY

AUTOMATED TESTING

Definition

Automate tests beyond unit,
including integration, system,
functional, and even some non-
functional acceptance tests
(performance, security, etc.)

Trigger tests from the
continuous integration process

Benefits

O Supports rapid development by
providing quick feedback (through
Cl process) on functional breaks,
performance degradation

O Safeguards against regression when
refactoring

Tools

Automated functional and behavior-driven
development test suites

AUTOMATED TESTING
WITH OPENSHIFT

Traditional OpenShift

. °U§EUE@ a : ,

APPLICATION APPLICATION APPLICATION
TESTBUILDA TESTBUILDB TESTBUILDC

APPLICATION A
TEST BUILD A

APPLICATION
TEST BUILD B

APPLICATION
TESTBUILD C

TRADITIONAL STATIC EPHEMERAL CONTAINERS DEPLOYED
SERVER ENVIRONMENT ON PRIVATE CLOUD SERVERS

AUTOMATED TESTING
WITH OPENSHIFT

SELF-CONTAINED UNIT

P P P pp— TESTS RUN ON ALL COMPONENTS:
’ ’ O OS resources

¢ O Application server

a O Configuration

U O Application

: O Libraries

C O And the interactions of all of these
0 0S

¢ RESOURCES

B

‘eoeocoosoosooooal

CONTINUOUS INTEGRATION

Definition Benefits
Every time Somebody commits O Normal state of the application is working,
))) functional
a Change’ the entire appl|cat|on O If the application is broken, it is treated as
IS built and a Comprehengive abnormal and requiring immediate
attention
set of automated tests are run
against it. (Humble and Farley,
201)
. Tools
Requires frequent code check
ins, good test coverage O VR
9 ge, O Cl server

preferably a Cl server

CONTINUOUS INTEGRATION
WITH OPENSHIFT

Note: Step 5 is redundant
Developer . in a purely container-driven Enterprise
Enterprise SCM C1/CD workflow Application Artifact

5 Repository

Master f

© saves app binary (if build
succeeds)

Enterprise ClICD /obuilds image

Server pushes image

© notifies

© reports results compiles \
O unit tests
packages application binary

Enterprise
Image Registry

MANAGEMENT AND MONITORING

Definition Benefits

Having tools that provide fine O Ability to gauge software quality and
infrastructure performance

grained detail on all aspects of o apility to gauge DevOps program
the application lifecycle: improvement

O Design-time APl governance

O Build-time quality metrics Tools

O Feature traceability - L

o Run-time application and G Coua mansgement ook
platform behavior

MANAGEMENT AND MONITORING
Traditional OpensShift

AD HOC, ONE-OFF

ROUTING APPROACHES STANDARDIZED

ORCHESTRATION

UNMANAGED, STANDARDIZED
NON-STANDARD - 00] CONTAINER SYSTEM

ENVIRONMENTS

Standardized container system and orchestration leads to
standardized management and monitoring, driving down MTTR.

DEPLOYMENT PIPELINES

Definition

Well-described, automated,
measured, and

continually optimized process
for moving an application
through the life cycle from idea
to production

Benefits

O Process control over releases: Releases
cannot go to production without passing
through all prior stages of validation

O Optimization of the entire delivery process:
Understanding where bottlenecks are and
means to reduce them

Tools

O Self-service requirements of deployment
pipelines require mature automation of
builds and deployments (including
environment provisioning)

O Version control, binary management (e.g.
Maven), Cl/CD server

DEPLOYMENT PIPELINE EXAMPLE

DEVELOPER
COMMITS,
TRIGGERING
AUTOMATED
BUILD

COMMIT ACCEPTANCE
STAGE STAGE

ENVIRONMENT
CONFIGURATION

COMPILATION

UNIT
TESTS DEPLOYMENT
AUTOMATIC
CODE AUTOMATED
QUALITY (FUNCTIONAL)
TESTS ACCEPTANCE
TESTS

INTEGRATION
TESTS

Q

QA
AUTHORIZES
PUSH-BUTTON
DEPLOY

Q

QA
AUTHORIZES
PUSH-BUTTON
DEPLOY

ENVIRONMENT
CONFIGURATION

DEPLOYMENT

MANUAL USER
TESTING

USABILITY
TESTING

ENVIRONMENT
CONFIGURATION

DEPLOYMENT
LOAD TESTING
STRESS TESTING
SOAK TESTING
SPIKE TESTING

CAPACITY
STAGE

O

OPERATIONS
AUTHORIZES
PUSH-BUTTON
DEPLOY

PRODUCTION
STAGE

ENVIRONMENT
CONFIGURATION

DEPLOYMENT

ROLLBACK
CAPABILITY

DEPLOYMENT PIPELINE WITH OPENSHIFT

UAT STAGE EXAMPL

Enterprise Image
Registry

t

© npulls image(s)

QA Team \\ pushes image(s)

P ® PaaS deploys container
acceptance/intg tests
— approves release Enterprise CI/CD P 9
Pproves S Server T 5

E

— PaaS Environment: TEST —_

2
lO._

/

manually tests

DEMO (OSE 2)

-« redhat

OPENSHIFT AS DEVOPS ACCELERATOR

OPENSHIFT

SELF ENVIRONMENT AUTO CENTERALIZED
PROVISIONING STANDARDIZATION REPLICATION OPS MANAGEMENT

o

<
Ea B3
>

CONTINUOUS DELIVERY

CONFIGURATION
MANAGEMENT

O DEVELOPERS

MANAGER

> PRODUCT
FEATURE

CONTINUOUS
INTEGRATION

OPERATIONS
= PERSONNEL

b

ENGINEERS

CYCLE TIME

QUESTIONS

-« redhat

