
THE JOURNEY OF BRINGING 
EAP TO OPENSHIFT V3
Aleš Justin, Marko Lukša
Red Hat Cloud Enablement
June 24, 2015



INTRODUCTION



About us & the CE team

● Aleš Justin (ajustin@redhat.com)
● Marko Lukša (mluksa@redhat.com)
● Cloud Enablement Team @ RedHat

○ Bring RedHat JBoss Middleware products to OpenShift v3
■ EAP
■ JWS
■ Fuse
■ JDG
■ ...



Project: Bring EAP to OpenShift

● EAP already available in OpenShift v2
● OpenShift v3 is a completely new environment, based on Kubernetes
● Prepare Docker images and templates:

○ standalone (single-node) EAP
○ clustered EAP systems

● Sounds simple, but really wasn’t
○ OpenShift still being developed at fast pace
○ All of us new to Kubernetes
○ Not experts in computer networking
○ Mostly using VMs all the time (non-Linux users, etc)
○ Lots of possible paths (standalone/domain, logging, metrics, …)



About the OpenShift v3 environment

● Docker
○ Package up your app with all its dependencies and the OS environment into an image
○ Image based on parent image
○ Layers
○ Creating new images:

■ manually (run image, make changes, commit as new image)
■ automatically (Dockerfile: FROM, ADD, RUN, CMD)

○ Push images to repository
○ Pull images from public repositories



About the OpenShift v3 environment

● Kubernetes
○ Orchestration system for Docker containers
○ Kubernetes Master & multiple Nodes (Minions)
○ Pods

■ Colocated group of containers
■ Resource sharing
■ Similar to a single server (single IP, port collisions, etc.)

○ Labels
■ (Key, Value) pairs
■ Label selectors

○ Services
■ Service discovery (ENV vars, DNS)

○ Replication controllers
■ Scaling

○ Flat network space



About the OpenShift v3 environment

● OpenShift v3
○ Complete DEVOPS system
○ Continuous delivery

■ Builds and Image Streams
● Transform source code into runnable image
● Docker build (Dockerfile)
● Source-to-Image build

○ inject source code into Docker image and produce new Docker image)
○ incremental builds (no re-downloading of dependencies)

● Build triggers: parent image change, source code change, generic web hooks
■ Deployments

● ReplicationControllers
● Triggers for creating a new deployment automatically (e.g. config change)
● Strategy for transitioning between deployments
● LifeCycle hooks

○ Routes (expose services to the outside world)
○ Templates (parameterizable set of resources)



Step 1: Identify requirements

● Brainstorming - initial list of subjects:
○ Service clustering
○ Configuration
○ Logging
○ Metrics
○ Auto-scaling
○ Single Sign-On
○ Testing

● General cloud requirement:
○ Need to have as few supporting containers as possible
○ Each supporting container must be as small as possible
○ Merge them all into single process



CLUSTERING



Service clustering

● Clustering for scalability
○ EAP is scalable already

■ Replicated sessions
■ EJBs
■ Cache

○ Replication controllers
● Clustering for high-availability

○ HAProxy
○ Kubernetes Services & Routes



Clustering - Multicast?

● EAP uses JGroups for clustering
● JGroups default: multicast UDP

○ If multicast available:
■ Very simple to set up - Marko’s blog post

○ When not available:
■ Need to use unicast TCP
■ Existing methods of discovery
■ New mechanism specifically for Kubernetes/OS3 



KubePing

● Initial implementation by Aleš
● Get list of pods/containers from Kube API
● Ping each container directly

○ Light / simple embedded server running
○ Get a hold of PingData

● Multiple EAP clusters
○ Label selectors

● Problems
○ Needs authorization to access K8s REST API
○ Needless complexity
○ Too implementation specific
○ Initially the only way (no DNS lookup of services)



DNSPing

● KubePing initially necessary (no DNS support in OS3 initially)
● Reduce coupling to the Kubernetes system
● Look up services through DNS A records

○ <name>.<namespace>.svc.cluster.local
■ returns the portal IP
■ for headless services returns A records for each endpoint

○ <name>.<namespace>.endpoints.cluster.local
■ always returns endpoints (for non-headless services also)
■ utilized by DNSPing

● SRV records
○ <portname>.<protocol>.<name>.<namespace>.svc.cluster.local



CONFIGURATION



Configuration

● Read-only config or modifiable during runtime?
○ Read-only atm → centralized place

● EAP Standalone or Domain Mode?
● Databases and other resources

○ Bundle all drivers
○ Template per different DB
○ Username / password in secrets

● Deploying apps (EAR, WAR, …)
○ Docker build?
○ Source-To-Image



Standalone vs. Domain Mode

● Standalone mode
○ Simplicity
○ More “docker way” of doing things (cattle vs. pets)
○ Kubernetes replication controllers - the proper way of managing instances

● Domain mode
○ Well-known to existing EAP administrators
○ Centralized management policy
○ Centralized config for server groups
○ Lots of existing tools (CLI, Web Console, JON, …)
○ Goes against Kubernetes/OpenShift model



Databases And Other Resources

● Multiple images (one containing each database driver) 
○ explosion of number of images

● Single EAP image, but separate JSON application templates
○ eap6-postgresql-sti
○ eap6-mysql-sti
○ eap6-mongodb-sti
○ eap6-amq-sti

● Non-persistent vs. Persistent storage 
● Configuration through template parameters

○ When creating from a template, some values entered manually, others auto-generated
○ Passed into the images through environment variables



LOGGING



Logging

● EAP defaults:
○ Log to STDOUT
○ Log to files

● The Docker Way: logging to STDOUT
○ docker logs <container-id>
○ openshift cli log <pod>

● Need centralized logging
○ get logs from lots of sources into a single log store



Centralized logging

● Lots (possibly hundreds) of containers
● Impossible to handle/look at them separately
● Benefits of seeing multiplexed front-end and back-end logs
● ELK stack:

○ Elastic
○ LogStash
○ Kibana

● But where do we take the logs from?
○ LogStash
○ LogSpout
○ FluentD



LogStash, LogSpout, FluentD

● LogStash
○ Grabs logs from various sources (stdin, files, etc.)
○ Filter log messages
○ Send them to e.g. Elastic through HTTP

● LogSpout
○ Grabs logs from STDOUT of all running Docker containers
○ Sends them to SysLog, Elastic and others
○ Problem: reads from Docker logs streams; downtime for LogSpout means missed logs
○ Solution: use FluentD instead

● FluentD
○ Docker streams its logs to disk, FluentD reads them from there
○ No missed logs



Multi-line log statements

● Each row of log is sent to Elastic as separate log message
● Problem: exception stacktraces
● Solution: log each log statement as a JSON object

○ Whole stacktrace added to Elastic as a single entity
○ Easier analysis, etc.

● New problem: hard to read log output to STDIN
○ Can’t use docker log <cid> anymore (too unreadable)
○ Also can’t use oc logs <pod-id>
○ Not really important - could log to files in the EAP-standard way



METRICS



Metrics

● Sources:
○ Containers (cAdvisor)

■ Low level; CPU, etc
○ JMX

■ JVM MBeans
■ Any MBean

○ DMR
■ Custom Management values

● Centralized storage in InfluxDB
● Visualization in Grafana



cAdvisor, jAdvisor → Heapster

● cAdvisor
○ already in OpenShift v3

● JMX
○ Jolokia
○ jAdvisor

● DMR
○ jAdvisor

● Moving it all to “heapster”



Heapster

● Collects metrics data from multiple sources (connects to Kubelets)
○ OS3 security increasing: work today, fail tomorrow
○ Problems:

■ Kubernetes REST Endpoint initially not secured (HTTP only)
■ Later moved from HTTP to HTTPS (initially HTTP hardcoded in Heapster)
■ Later also secured through client certificates and OAuth tokens
■ At the end, the Kubelets also secured in same way (another change needed in 

Heapster)
● Sends data to sinks

○ InfluxDB



SCALING



Scaling (manual)

● Scaling in Kubernetes
○ Replication controllers

■ Number of replicas
● Scale up

○ Not problematic in most cases
● Scale down

○ Problems!



Scaling down

● Stopping a container:
○ SIGTERM
○ Wait 10, 20, 30 seconds
○ SIGKILL

● Graceful shutdown
○ pre-stop hooks

■ HTTP get
■ Executable

○ Problems:
■ What if the Pre-stop hook fails during execution
■ What if the Kubelet fails
■ What if the whole server fails



Graceful shutdown

● Problem #1: tasks in progress
○ HTTP requests

■ Short-lived
○ Other tasks

■ Long-running tasks
● Problem #2: state

○ Non-replicated sessions
○ Transfer state to other nodes?



Auto-scaling

● Autoscaler in Kubernetes, OS3 or external autoscaler?
○ Imho, 99% covered with simple http(s) service monitoring

● Get metrics from where?
○ Directly from EAP
○ From InfluxDB → more generic

● What metrics to base scale-up & scale-down on?



SINGLE SIGN-ON



Single Sign-On

● OS3 allows you to use external OAuth providers
○ Rob Cernich (CE team) added support for using KeyCloak as an OAuth handler
○ OS3 is not meant to be an identity server
○ OS3 only provides authorization scopes specific to OS3

● Fabric8 provides KeyCloak as an installable application OOB
● EAP does not provide OAuth support OOB

○ WildFly 9
○ Will add SSO support into our EAP image later



DEMO



Demo #1 - full EAP

● Install the jboss-image-streams.json
● Install the eap-basic-sti template
● Install the eap-app-secret.json
● Create a new deployment from the eap-basic-sti template



Demo #2 - auto-scaling

● Simple “long” running app
○ Auto-scaling → custom Ascaler
○ Pre-stop monitoring → built-in app

■ Atm request count only
○ Pre-stop hooks → custom prestop-exec

■ Can be changed with HTTP get
● JMeter Test plan



TESTING



Testing?

● Arquillian support
○ Mocking OS3 behavior: build, push, deploy

● Testsuite
○ Using this Arquillian support

https://github.com/jboss-openshift/ce-arq
https://github.com/jboss-openshift/ce-testsuite



Not on Linux?

Project Jube (https://github.com/fabric8io/jube)
● Java based Kubernetes mock

○ It’s all about Kubernetes REST API
■ And similar Kubernetes-like behavior

● Replication, master election, ...
● Where is Docker?

○ Nope, no Docker here
■ Zip images
■ Lifecycle scripts



WRAP UP



Try it out yourself

● Set up OS3 on your own servers
○ Install Docker
○ Download and run OpenShift All-in-one server

■ https://github.com/openshift/origin/releases
■ $ openshift start

● Use our templates to deploy EAP
○ https://github.com/jboss-openshift/application-templates
○ $ oc create -n openshift -f jboss-image-streams.json
○ $ oc create -n myproject -f eap/eap-basic-sti.json
○ Open console at https://localhost:8443/console and click the “Create…” button

https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/jboss-openshift/application-templates
https://github.com/jboss-openshift/application-templates


Thank you

● Aleš Justin (ajustin@redhat.com)
● Marko Lukša (mluksa@redhat.com)

mailto:ajustin@redhat.com
mailto:mluksa@redhat.com


Q & A




