Red Hat Enterprise Linux
OpenStack Platform on
Inktank Ceph Enterprise
Cinder Volume Performance

Performance Engineering

Version 1.0
December 2014
Table of Contents

1 Executive Summary .. 5
2 Test Environment ... 5
 2.1 Hardware .. 5
 2.2 Software .. 6
 2.3 Ceph ... 7
 2.4 OpenStack .. 7
3 Test Workloads ... 8
 3.1 Test Design ... 8
 3.2 Large File Sequential I/O ... 9
 3.3 Large File Random I/O .. 9
 3.4 Small File I/O ... 10
4 Test Results .. 11
 4.1 Scaling OpenStack Ceph ... 11
 4.1.1 Large File Sequential I/O ... 11
 4.1.2 Large File Random I/O .. 14
 4.1.3 Small File I/O .. 16
5 Performance Tuning Effects ... 19
 5.1 Tuned Profiles ... 19
 5.1.1 Large File Sequential I/O ... 20
 5.1.2 Large File Random I/O .. 21
 5.1.3 Small File I/O .. 22
 5.2 Instance Device Readahead .. 23
 5.2.1 Large File Sequential I/O ... 23
 5.3 Ceph Journal Configuration .. 24
 5.3.1 Large File Sequential Writes .. 24
 5.3.2 Large File Random Writes .. 26
 5.3.3 Small File I/O .. 28
Appendix A: Tuned Profiles .. 29
 throughput-performance ... 29
 latency-performance ... 29
 virtual-host ... 30
 virtual-guest ... 30
Appendix B: Ceph Configuration File ... 31
Appendix C: Openstack Configuration Files

- Packstack Answer File ... 32
- nova.conf .. 35
- cinder.conf ... 37
- glance-api.conf ... 38
1 Executive Summary

This paper describes I/O characterization testing performed by the Red Hat Performance Engineering group on a Red Hat Enterprise Linux (RHEL) OpenStack Platform (OSP) v5 configuration using Cinder volumes on Inktank Ceph Enterprise (ICE) v1.2.2 storage. It focuses on steady-state performance of OpenStack instance created file systems on Cinder volumes as a function of the number of instances per server. It examines Ceph's ability to scale as the test environment grows as well as the effects of performance tuning involving tuned profiles, device readahead and Ceph journal disk configurations.

2 Test Environment

The hardware and software configurations used for the systems under test (SUT).

2.1 Hardware

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceph OSD Node</td>
<td>Dell PowerEdge R620, 64GB RAM, 2-socket Sandy Bridge (12) Intel Xeon CPU E5-2620 @2.00GHz (1) Intel X520 82599EB dual-port 10G NIC Dell PERC H710P (MegaRAID) controller (1GB WB cache) (6) Seagate ST9300605SS 300GB SAS 6Gb/s HDD drives (no readahead, writeback) (2) Sandisk LB206M 200GB SAS 6Gb/s SSD drives (adaptive readahead, writethrough)</td>
</tr>
<tr>
<td>OSP Controller OSP Compute</td>
<td>Dell PowerEdge R610, 48GB RAM, 2-socket Westmere (12) Intel Xeon CPU X5650 @2.67GHz (1) Intel 82599ES dual-port 10-GbE NIC</td>
</tr>
<tr>
<td>Network</td>
<td>Cisco Nexus 7010 switch</td>
</tr>
</tbody>
</table>

Table 1: Hardware Configuration
2.2 Software

| **Ceph OSD Nodes (4-8)** | • kernel-3.10.0.123.el7 (RHEL 7.0)
| | • ceph-0.80.7.0 (ICE 1.2.2)
<table>
<thead>
<tr>
<th></th>
<th>• tuned profile: virtual-host</th>
</tr>
</thead>
</table>
| **OSP Controller (1)** | • kernel-3.10.0.123.8.1.el7 (RHEL 7.0)
| | • openstack-packstack-2014.1.1.0.42.dev1251.el7ost
| | • openstack-nova-*.2014.1.3.4.el7ost
| | • openstack-neutron-*.2014.1.3.7.el7ost
| | • openstack-keystone-2014.1.3.2.el7ost
| | • openstack-glance-2014.1.3.1.el7ost
| | • openstack-cinder-2014.1.3.1.el7ost
| | • openstack-utils-2014.1.3.2.el7ost
| | • ceph-release-1.0.el7
| | • ceph-deploy-1.5.18.0
| | • ceph-0.80.5.8.el7
| | • tuned profile: virtual-host |
| **OSP Computes (8-16)** | • kernel-3.10.0.123.8.1.el7 (RHEL 7.0)
| | • qemu-kvm-rhev-1.5.3.60.el7_0.7
| | • openstack-nova-compute-2014.1.3.4.el7ost
| | • openstack-neutron-2014.1.3.7.el7ost
| | • openstack-neutron-openvswitch-2014.1.3.7.el7ost
| | • openstack-utils-2014.1.3.2.el7ost
| | • ceph-0.80.7.0.el7 (ICE 1.2.2)
| | • tuned profile: virtual-host |
| **OSP Instances (512)** | • kernel-3.10.0.123.el7 (RHEL 7.0)
| | • 1 CPU, 1 GB, 20GB system disk
| | • tuned profile: virtual-guest |

Table 2: Software Configuration
2.3 Ceph

Ceph stores client data as objects within storage pools. It maps objects to placement groups (PGs) which organize objects as a group into object storage devices (OSDs). See Ceph introductory documentation for greater detail (http://ceph.com/docs/master/start/intro/).

Testing was performed in a 4x8 (Ceph nodes and OSP compute nodes) test environment as well as an 8x16 configuration. Each Ceph OSD node allocated five 300GB local disks for use as OSDs and an SSD for Ceph journals. The configuration file used during testing is available in Appendix B: Ceph Configuration File. Each OSP instance had a cinder volume created, attached, pre-allocated, XFS formatted, and mounted as /dev/vdb for all I/O tests. The number of placement groups (PGs) for the pool as well as the number of placement groups to use when calculating data placement were adjusted to pass a ceph health check using the recommended rule where one OSD is expected to manage approximately 100 PGs or more. The general rule used is

\[
\text{PGs per pool} = \frac{(\text{OSDs} \times 100)}{\text{max_rep_count}} \div \text{NB_POOLS}
\]

where \text{max_rep_count} is the replica count (default=3) and \text{NB_POOLS} is the total number of pool storing objects. For this testing, both \text{pg_num} and \text{pgp_num} were set to 700 for the 20-OSD configuration and 1400 when testing with 40 OSDs.

2.4 OpenStack

RHEL OSP 5.0 was installed and configured using packstack with an answer file, the specific contents of which are available in Appendix C: Openstack Configuration Files. It configures one OpenStack controller node (Nova, Neutron, Glance, Cinder, Keystone, etc.) and 16 compute nodes. Cinder was configured to use the Ceph storage described in Section 2.3 using the instructions to utilize Ceph block device images via libvirt within OpenStack (http://ceph.com/docs/master/rbd/rbd-openstack/).

After each instance attaches a 6 GB Cinder volume, 4.3 GB of the block is pre-allocated (for 4 GB I/O tests) using \text{dd} before mounting the device in the instance. This is done to achieve repeatable throughput results as RBD volumes are thin provisioned and without doing so can produce different results from first write to second.
3 Test Workloads

This project used a set of tests that covers a wide spectrum of the possible workloads applicable to a Cinder volume.

3.1 Test Design

All tests are designed:

• to represent steady state behavior
 ◦ by using random I/O test durations of 10 min + 10 sec/guest to ensure run times are sufficient to fully utilize guest memory and force cache flushes to storage

• to ensure data travels the full I/O path between persistent storage and application
 ◦ by using \texttt{vm.dirty_expire_centisecs} in conjunction with \texttt{vm.dirty_ratio}
 ◦ by dropping all (server, compute, guest) caches prior to start of every test
 ◦ by ensuring workload generators do not read or write the same file or offset in a file more than once, reducing opportunities for caching in memory
 ◦ so random I/O uses O_DIRECT to bypass guest caching

• to use a data set an order of magnitude larger than aggregate writeback cache size to ensure data is written to disk by end of test

Although testing is designed to cause data to travel the full path between the application and persistent storage, Ceph (like NFS) uses buffering for OSD I/O even when the application has requested direct I/O (O_DIRECT), as illustrated by the Ceph server memory consumption in KB during a random write test in Figure 3.1. Keys indicated with a solid circle are graphed.

![memory_usage](attachment:memory_usage.png)

Figure 3.1: Server Memory (KB) Usage – 32 Instance Random Writes
With the partial exception of random I/O tests, all instances are running at the maximum throughput that the hardware will allow. In a more real world example, instances often do not and the OSP-Ceph hardware configuration should account for that to avoid over-provisioning storage.

3.2 Large File Sequential I/O

Large-file sequential multi-stream reads and writes by the `iozone -+m` benchmark
- using a 4GB file per server with a 64KB record size
- where each instance executes a single I/O thread
- where timing calculations include close and flush (fsync,fflush)

```
iozone -+m iozone.cfg -+h 192.167.0.1 -w -C -c -e -i $operation -+n -r 64 -s 4g -t $instances
```

where:
- `operation` is either 0 or 1 (writes or reads)
- `instances` starts at 1 doubling in size up to 512
- `iozone.cfg` is a text file on the test driver containing entries for each instance including its IP, location of its iozone executable, and the target directory.

```
192.167.2.11 /mnt/ceph/ioz /usr/local/bin/iozone
192.167.2.12 /mnt/ceph/ioz /usr/local/bin/iozone
192.167.2.13 /mnt/ceph/ioz /usr/local/bin/iozone
192.167.2.14 /mnt/ceph/ioz /usr/local/bin/iozone
192.167.2.15 /mnt/ceph/ioz /usr/local/bin/iozone
...```

### 3.3 Large File Random I/O

Large-file random multi-stream reads and writes using an `fio` (Flexible I/O benchmark) based workload for testing pure random I/O on Cinder volumes. This workload executes a random I/O process inside each instance in parallel using options to start and stop all threads at approximately the same time. This allows aggregation of the per-thread results to achieve system-wide IOPS throughput for OpenStack on RHS. Additionally, fio can rate limit throughput, run time and IOPS of individual processes to measure instance scaling throughput as well as the OSD node's aggregate OSP instance capacity.

The following rate limits were applied:
- maximum 100 IOPS per instance
- maximum run time

```
fio --ioengine=sync --bs=64k --direct=1 --name=fiofile --rw=$operation --directory=/mnt/ceph/ioz --size=4g --minimal --rate_iops=100 --runtime=$runtime
```

where
- `operation` is either randwrite or randread
- `runtime` is the calculated maximum run time (10 minutes plus 10 seconds per instance)
3.4 Small File I/O

Small-file multi-stream using the smallfile benchmark. Sequential operations include:

- create -- create a file and write data to it
- append -- open an existing file and append data to it
- read -- drop cache and read an existing file
- rename -- rename a file
- delete_renamed -- delete a previously renamed file

The test was configured to sequentially execute the following workload:

- one thread per OSP instance
- 30000 64KB files
- 100 files per directory
- stonewalling disabled

`./smallfile_cli.py --host-set "\`cat vms.list.$instances | tr ' ' ','\" --response-times Y --stonewall N --top /mnt/ceph/smf --network-sync-dir /smfnfs/sync --threads $instances --files 30000 --files-per-dir 100 --file-size 64 --file-size-distribution exponential --operation $operation`

where

- `instances` starts at 1 doubling in size up to 512
- `operation` loops through the above listed actions
4 Test Results

I/O scaling tests were performed using increasing instance counts in both test environments. All multi-instance tests ensured even distribution across compute nodes. The results of all testing are in the following sections.

4.1 Scaling OpenStack Ceph

To remain consistent with regard to instances per server, two test environments were configured for scaling data collection,

- a 4-server Ceph cluster (20 OSDs, 700 placement groups) and 8 OSP compute nodes
- an 8-server Ceph cluster (40 OSDs, 1400 placement groups) and 16 OSP compute nodes

Each compute node could host up to 32 (1GB, 1 CPU, 20G disk) OSP instances.

4.1.1 Large File Sequential I/O

Clustered iozone was executed on all participating instances in both test environments.

In Figure 4.1, note that a single instance per server has greater aggregate throughput than that of 64 instances. This is primarily due to Ceph striping data across OSDs using the CRUSH algorithm. Additionally, for sequential and small file workloads the write system call does not block unless the vm.dirty_ratio threshold is reached in the instance which enables parallel activity on multiple OSDs per server even with a single thread on a single instance issuing sequential writes. For random writes where O_DIRECT is used, all writes block until reaching persistent storage.
Figure 4.2 highlights how sequential read performance peaks at 32 instances per server.

Figure 4.1: Scaling Large File Sequential Writes

Figure 4.2: Scaling Large File Sequential Reads
With five OSDs per server, 32 instances performing reads generate queue depths sufficient to engage all OSDs (devices sdb through sdf in Figure 4.3) but device readahead is only sufficient to keep a single disk at a time busy. Devices marked by a solid color circle are mapped. The Y-axis represents the average queue length of requests to the device.

**Queue Size**

![Figure 4.3: OSD Queue Depths – 32 Instance Sequential Reads](image)

With Ceph reading 4-MB objects from the OSDs, a greater than 4-MB device readahead would be required to get parallel activity on additional OSDs. Without it, results are limited to the throughput of a single disk drive. This is emphasized in Figure 5.7 where increasing instance device readahead improved 16-instance throughput by 50% and single instance throughput by a factor of four.
4.1.2 Large File Random I/O

All instances were rate limited by both run time (10 minutes plus 10 seconds per participating instance) and maximum IOPS (100 per instance) settings. All throughput results are measured in total IOPS (primary Y-axis, higher is better) while instance response time is the 95th percentile submission to completion latency on overall throughput (secondary Y-axis, lower is better).

Figure 4.4 highlights how instances are rate limited to 100 IOPS and as such the throughput of lower instances/server counts is limited by the test itself. As throughput increases, a peak is reached where server capacity limits throughput rather than the benchmark.

The super-linear scaling observed at 4-8 instances/server is an example of how Ceph can support much higher throughput for short periods of time because a good portion of the writes are buffered in server memory. Longer run times produce sustained random writes at higher instance counts resulting in the throughput shown in the right side of Figure 4.4 where we see linear scaling within experimental error.

Note the difference in response time for random reads (90 msec, Figure 4.5) versus that of random writes (1600 msec, Figure 4.4).
Figure 4.5 graphs random read scaling results.

Figure 4.5: Scaling Large File Random Reads

The lower throughput levels of random writes compared to those of random reads are attributed to both 3-way replication and the need to commit to disk using OSD journals.
4.1.3 Small File I/O

Small file I/O results exhibit similar behavior observed with sequential I/O where the write curve (Figure 4.6) is almost level as guest density increases while the read curve (Figure 4.7) rises over time until a server saturation point is reached.

With writes, the instance operating system can buffer write data as can the Ceph OSDs (after journaling). Thus disk writes can be deferred creating additional opportunities for parallel disk access. RBD caching also plays a role in the increased parallel writes. Note that Cinder volumes are not accessing the small files but are instead performing reads and writes to the underlying Ceph storage.
With a single guest executing a single small file thread, reads can only target a single disk drive at one time and as such throughput is limited to that of a single disk. Although multiple disks are participating in the test, they are not simultaneously doing reads.

As with large file sequential writes, small file writes do not block until data reaches disk whereas reads must block until data is retrieved from disk, or prefetched from disk with readahead. This results in low queue depths on disks with reads (see Figure 4.8).
Greater overall throughput is achieved only when more instances participate in order to increase the queue depths (see Figure 4.9). Note that neither small file nor sequential threads are rate limited.
5 Performance Tuning Effects

Additional testing was performed to examine the effect of various performance tuning efforts on a subset of instance counts. Results of interest are presented in this section including:

- tuneD daemon profiles
- instance device readahead
- Ceph journal disk configurations

5.1 Tuned Profiles

Tuned is a daemon that uses udev to monitor connected devices. Using statistics it dynamically tunes system settings according to a chosen profile. RHEL 7 server tuned applies the throughput-performance profile by default. Additional tests were executed to compare the performance of Ceph using the latency-performance and virtual-host profiles (see Appendix A: Tuned Profiles for details). The virtual-host profile ultimately proved optimal throughout testing and is identical to the throughput-performance profile with the exceptions being:

- **vm.dirty_background_ratio** decreases (10 -> 5)
- **kernel.sched_migration_cost_ns** increases (500K -> 5 million)

The virtual-host profile is now the default used in RHEL 7 OSP deployments.
5.1.1 Large File Sequential I/O

The virtual-host profile improves sequential reads by 15% and write performance greater than 35-50% compared to the throughput-performance results.

Figure 5.1: Effect of TuneD Profiles on Sequential Writes

Figure 5.2: Effect of TuneD Profiles on Sequential Reads
5.1.2 Large File Random I/O

Lower latency allows the total random write IOPS of the virtual-host profile to achieve almost twice that of the default throughput-performance. The virtual-host profile is now the default for RHEL 7 OSP compute nodes.

![Figure 5.3: Effect of TuneD Profiles on Large File Random Writes](image)

![Figure 5.4: Effect of TuneD Profiles on Large File Random Reads](image)
5.1.3 Small File I/O

Small file throughput benefits with greater than 35% gains in file creates at 16 and 32 instances using the *virtual-host* profile.

---

**Figure 5.5: Effect of TuneD Profiles on Small File Writes**

**Figure 5.6: Effect of TuneD Profiles on Small File Reads**
5.2 Instance Device Readahead

The device readahead setting (read_ahead_kb) for the cinder volume mounted within each OSP instance was modified to determine its effect on sequential I/O.

5.2.1 Large File Sequential I/O

Large file sequential reads make the most from increased device readahead sizes on the guest’s Cinder block device (e.g., /dev/vdb). Increasing readahead allows Linux to prefetch data from more than one OSD at a time, increasing single instance throughput by 4x, another example of the benefit of parallel activity on the OSDs.

Modifying device readahead was of no added value to any of the other tests.
5.3 Ceph Journal Configuration
All workloads were tested using various Ceph journal configurations including:

- each OSD journal on a partition of the OSD itself (default)
- all journals on a single SSD JBOD device
- all journals divided among two SSD JBOD devices
- all journals on a 2-SSD striped (RAID 0) device

The default size of a journal on its own OSD is 5GB so for the sake of comparison, all journals on SSDs were the same size.

5.3.1 Large File Sequential Writes
Figure 5.8 graphs the effect of Ceph journal configuration on sequential writes.

![Graph showing effect of journal configuration on sequential writes](image)

**Figure 5.8: Effect of Journal Configuration on Sequential Writes**

Note that housing the journals on a single SSD achieved the least throughput compared to the other configurations. This is due to all of the writes for five OSDs funneling through the one SSD which in this configuration only pushed 220 MB/s of sequential I/O. The SSD became the bottleneck (see device sdg in Figure 5.9) whereas with two SSDs, the bottleneck
is removed.

Figure 5.9: Single SSD Journal Utilization – 32 Instance Sequential Writes
5.3.2 Large File Random Writes

Figure 5.10 graphs the effect of Ceph journal configuration on random writes where SSDs in any configuration outperforms OSD housed journals by 65% at 32 instances.

![Graph showing the effect of journal configuration on random write throughput and latency.](image)

**Figure 5.10: Effect of Journal Configuration on Large File Random Writes**

The throughput falling off at higher instance counts emphasizes the effect of response time. Here the bottleneck in the OSD journals case is disk spindle seek time and therefore any SSD configuration has a dramatic improvement in IOPS compared to five disks at approximately 100 IOPS/disk.
Figure 5.11: OSD Journal Utilization – 32 Instance Random Writes
5.3.3 Small File I/O

Small file throughput benefits with greater than 35% gains in file creates at 16 and 32 instances and 50% at higher instance counts using the striped SSD for journaling.

Much like the sequential write results, housing the journals on a single SSD achieved the least throughput compared to the other configurations, again because of all writes for five OSDs funneling through a single SSD.
Appendix A: Tuned Profiles

Below are the system settings applied by tuneD for each profile. The red text highlights the differences from the default throughput-performance profile.

**throughput-performance**

- CPU governor = performance
- energy_perf_bias=performance
- block device readahead = 4096
- transparent hugepages = enabled
- kernel.sched_min_granularity_ns = 10000000
- kernel.sched_wakeup_granularity_ns = 15000000
- vm.dirty_ratio = 40
- vm.dirty_background_ratio = 10
- vm.swappiness = 10

**latency-performance**

- force_latency=1
- CPU governor = performance
- energy_perf_bias=performance
- transparent hugepages = enabled
- kernel.sched_min_granularity_ns = 10000000
- kernel.sched_migration_cost_ns = 5000000
- vm.dirty_ratio = 10
- vm.dirty_background_ratio = 3
- vm.swappiness = 10
**virtual-host**

- CPU governor = performance
- energy_perf_bias=performance
- block device readahead = 4096
- transparent hugepages = enabled
- kernel.sched_min_granularity_ns = 10000000
- kernel.sched_wakeup_granularity_ns = 15000000
- kernel.sched_migration_cost_ns = 5000000
- vm.dirty_ratio = 40
- vm.dirty_background_ratio = 5
- vm.swappiness = 10

**virtual-guest**

- CPU governor = performance
- energy_perf_bias=performance
- block device readahead = 4096
- transparent hugepages = enabled
- kernel.sched_min_granularity_ns = 10000000
- kernel.sched_wakeup_granularity_ns = 15000000
- kernel.sched_migration_cost = 500000
- vm.dirty_ratio = 30
- vm.dirty_background_ratio = 10
- vm.swappiness = 30
Appendix B: Ceph Configuration File

[global]
fsid = 002196a8-0eaf-45fc-a355-45309962d06c
mon_initial_members = gprfc089
mon_host = 17.11.154.239
auth cluster required = none
auth service required = none
auth client required = none
filestore_xattr_use_omap = true
public network = 172.17.10.0/24
cluster network = 172.17.10.0/24

[client]
admin socket = /var/run/ceph/rbd-client-$pid.asok
log_file = /var/log/ceph/ceph-rbd.log
rbd cache = true
rbd cache writethrough until flush = true

[osd]
osd backfill full ratio = 0.90
#osd op threads = 8
#filestore merge threshold = 40
#filestore split multiple = 8
Appendix C: Openstack Configuration Files

Packstack Answer File

```plaintext
[generic]
CONFIG_DEBUG_MODE=n
CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub
CONFIG_MYSQL_INSTALL=y
CONFIG_GLANCE_INSTALL=y
CONFIG_CINDER_INSTALL=y
CONFIG_NOVA_INSTALL=n
CONFIG_NEUTRON_INSTALL=y
CONFIG_SWIFT_INSTALL=n
CONFIG_CEILOMETER_INSTALL=y
CONFIG_HEAT_INSTALL=n
CONFIG_CLIENT_INSTALL=y
CONFIG_NTP_SERVERS=17.11.159.254,17.11.255.2,17.11.255.3
CONFIG_NAGIOS_INSTALL=n
EXCLUDE_SERVERS=
CONFIG_MYSQL_HOST=17.11.154.120
CONFIG_MYSQL_USER=root
CONFIG_MYSQL_PW=
CONFIG_QPID_HOST=17.11.154.120
CONFIG_QPID_ENABLE_SSL=n
CONFIG_QPID_ENABLE_AUTH=n
CONFIG_QPID_NSS_CERTDB_PW=
CONFIG_QPID_SSL_PORT=5671
CONFIG_QPID_SSL_CERT_FILE=/etc/pki/tls/certs/qpid_selfcert.pem
CONFIG_QPID_SSL_KEY_FILE=/etc/pki/tls/private/qpid_selfkey.pem
CONFIG_QPID_SSL_SELF_SIGNED=y
CONFIG_QPID_AUTH_USER=qpid_user
CONFIG_QPID_AUTH_PASSWORD=
CONFIG_KEYSTONE_HOST=17.11.154.120
CONFIG_KEYSTONE_DB_PW=
CONFIG_KEYSTONE_ADMIN_TOKEN=9a4d45dc558742099f8011b5ba8d7869
CONFIG_KEYSTONE_ADMIN_PW=
CONFIG_KEYSTONE_DEMO_PW=
CONFIG_KEYSTONE_TOKEN_FORMAT=PKI
CONFIG_GLANCE_HOST=17.11.154.120
CONFIG_GLANCE_DB_PW=
CONFIG_GLANCE_KS_PW=
CONFIG_CINDER_HOST=17.11.154.120
CONFIG_CINDER_DB_PW=
CONFIG_CINDER_KS_PW=
CONFIG_CINDER_VOLUMES_CREATE=n
CONFIG_CINDER_VOLUMES_SIZE=20G
CONFIG_CINDER_NFS_MOUNTS=
CONFIG_NOVA_API_HOST=17.11.154.120
CONFIG_NOVA_CERT_HOST=17.11.154.120
CONFIG_NOVA_VNC_PROXY_HOST=17.11.154.120
```

www.redhat.com
CONFIG_NOVA_CONDUCTOR_HOST=17.11.154.120
CONFIG_NOVA_DB_PW=password
CONFIG_NOVA_KS_PW=password
CONFIG_NOVA_SCHED_HOST=17.11.154.120
CONFIG_NOVA_SCHED_CPU_ALLOC_RATIO=16.0
CONFIG_NOVA_SCHED_RAM_ALLOC_RATIO=1.5
CONFIG_NOVA_COMPUTE_PRIVIF=p2p2
CONFIG_NOVA_NETWORK_HOSTS=17.11.154.120
CONFIG_NOVA_NETWORK_MANAGER=nova.network.manager.FlatDHCPManager
CONFIG_NOVA_NETWORK_PUBIF=em1
CONFIG_NOVA_NETWORK_PRIVIF=p2p2
CONFIG_NOVA_NETWORK_FIXEDRANGE=191.168.32.0/24
CONFIG_NOVA_NETWORK_FLOATRANGE=10.3.4.0/22
CONFIG_NOVA_NETWORK_DEFAULTFLOATINGPOOL=nova
CONFIG_NOVA_NETWORK_AUTOASSIGNFLOATINGIP=n
CONFIG_NOVA_NETWORK_VLAN_START=100
CONFIG_NOVA_NETWORK_NUMBER=1
CONFIG_NOVA_NETWORK_SIZE=255
CONFIG_NEUTRON_SERVER_HOST=17.11.154.120
CONFIG_NEUTRON_KS_PW=password
CONFIG_NEUTRON_DB_PW=password
CONFIG_NEUTRON_L3_HOSTS=17.11.154.120
CONFIG_NEUTRON_L3_EXT_BRIDGE=br-ex
CONFIG_NEUTRON_DHCP_HOSTS=17.11.154.120
CONFIG_NEUTRON_LBAAS_HOSTS=
CONFIG_NEUTRON_L2_PLUGIN=openvswitch
CONFIG_NEUTRON_METADATA_HOSTS=17.11.154.120
CONFIG_NEUTRON_METADATA_PW=password
CONFIG_NEUTRON_LB_TENANT_NETWORK_TYPE=local
CONFIG_NEUTRON_LB_VLAN_RANGES=
CONFIG_NEUTRON_LB_INTERFACE_MAPPINGS=
CONFIG_NEUTRON_OVS_TENANT_NETWORK_TYPE=gre
CONFIG_NEUTRON_OVS_VLAN_RANGES=
CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=
CONFIG_NEUTRON_OVS_BRIDGE_IFACES=
CONFIG_NEUTRON_OVS_TUNNEL_RANGES=1:1000
CONFIG_NEUTRON_OVS_TUNNEL_IF=p2p2
CONFIG_OSCLIENT_HOST=17.11.154.120
CONFIG_HORIZON_HOST=17.11.154.120
CONFIG_HORIZON_SSL=n
CONFIG_SSL_CERT=
CONFIG_SSL_KEY=
CONFIG_SWIFT_PROXY_HOSTS=17.11.154.120
CONFIG_SWIFT_KS_PW=password
CONFIG_SWIFT_STORAGE_HOSTS=17.11.154.120
CONFIG_SWIFT_STORAGE_ZONES=1
CONFIG_SWIFT_STORAGE_REPLICAS=1
CONFIG_SWIFT_STORAGE_FSTYPE=ext4
CONFIG_SWIFT_HASH=bc05f46001e442b6
CONFIG_SWIFT_STORAGE_SIZE=2G
CONFIG_PROVISION_DEMO=n
CONFIG_PROVISION_DEMO_FLOATRANGE=172.24.4.224/28
CONFIG_PROVISION_TEMPEST=n
CONFIG_PROVISION_TEMPEST_REPO_URI=https://github.com/openstack/tempest.git
CONFIG_PROVISION_TEMPEST_REPO_REVISION=master
CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE=n
CONFIG_HEAT_HOST=17.11.154.120
CONFIG_HEAT_DB_PW=password
CONFIG_HEAT_KS_PW=password
CONFIG_HEAT_CLOUDWATCH_INSTALL=n
CONFIG_HEAT_CFN_INSTALL=n
CONFIG_HEAT_CLOUDWATCH_HOST=17.11.154.120
CONFIG_HEAT_CFN_HOST=17.11.154.120
CONFIG_CEILOMETER_HOST=17.11.154.120
CONFIG_CEILOMETER_SECRET=8a8af0a389b04b02
CONFIG_SATELLITE_KS_PW=password
CONFIG_USE_EPEL=n
CONFIG_REPO=
CONFIG_RH_USER=
CONFIG_RH_PW=
CONFIG_RH_BETA_REPO=n
CONFIG_SATELLITE_URL=
CONFIG_SATELLITE_USER=
CONFIG_SATELLITE_PW=
CONFIG_SATELLITE_AKEY=
CONFIG_SATELLITE_CACERT=
CONFIG_SATELLITE_PROFILE=
CONFIG_SATELLITE_FLAGS=
CONFIG_SATELLITE_PROXY=
CONFIG_SATELLITE_PROXY_USER=
CONFIG_SATELLITE_PROXY_PW=
[DEFAULT]
rabbit_host=17.11.154.120
rabbit_port=5672
rabbit_hosts=17.11.154.120:5672
rabbit_userid=guest
rabbit_password=password
rabbit_virtual_host=/
rabbit_ha_queues=False
rpc_backend=nova.openstack.common.rpc.impl_kombu
state_path=/var/lib/nova
quota_instances=160
quota_cores=160
quota_ram=1200000
enabled_apis=ec2,osapi_compute,metadata
ec2_listen=0.0.0.0
osapi_compute_listen=0.0.0.0
osapi_compute_workers=24
metadata_listen=0.0.0.0
service_down_time=60
rootwrap_config=/etc/nova/rootwrap.conf
auth_strategy=keystone
use_forwarded_for=False
service_neutron_metadata_proxy=True
neutron_metadata_proxy_shared_secret=password
neutron_default_tenant_id=default
novncproxy_host=0.0.0.0
novncproxy_port=6080
glance_api_servers=17.11.154.120:9292
network_api_class=nova.network.neutronv2.api.API
metadata_host=17.11.154.120
neutron_url=http://17.11.154.120:9696
neutron_url_timeout=30
neutron_admin_username=neutron
neutron_admin_password=password
neutron_admin_tenant_name=services
neutron_region_name=RegionOne
neutron_admin_auth_url=http://17.11.154.120:35357/v2.0
neutron_auth_strategy=keystone
neutron_ovs_bridge=br-int
neutron_extension_sync_interval=600
security_group_api=neutron
lock_path=/var/lib/nova/tmp
debug=true
verbose=True
log_dir=/var/log/nova
use_syslog=False
cpu_allocation_ratio=16.0
ram_allocation_ratio=1.5
scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,CoreFilter
firewall_driver=nova.virt.firewall.NoopFirewallDriver
volume_api_class=nova.volume.cinder.API
sql_connection=mysql://nova:password@17.11.154.120/nova
image_service=nova.image.glance.GlanceImageService
libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtGenericVIFDriver
osapi_volume_listen=0.0.0.0
libvirt_use_virtio_for_bridges=True

[baremetal]
use_file_injection=true

[keystone_authtoken]
auth_host=17.11.154.120
auth_port=35357
auth_protocol=http
auth_uri=http://17.11.154.120:5000/
admin_user=nova
admin_password=password
admin_tenant_name=services

[libvirt]
libvirt_images_type=rbd
libvirt_images_rbd_pool=volumes
libvirt_images_rbd_ceph_conf=/etc/ceph/ceph.conf
rbd_user=cinder
rbd_secret_uuid=575b15f2-b2b1-48d0-9df9-29dea74333e8
inject_password=false
inject_key=false
inject_partition=-2
cinder.conf

[DEFAULT]
rabbit_host=17.11.154.120
rabbit_port=5672
rabbit_hosts=17.11.154.120:5672
rabbit_userid=guest
rabbit_password=password
rabbit_virtual_host=/
rabbit_ha_queues=False
notification_driver=cinder.openstack.common.notifier.rpc_notifier
rpc_backend=cinder.openstack.common.rpc.impl_kombu
control_exchange=openstack
quota_volumes=160
quota_gigabytes=6400
osapi_volume_listen=0.0.0.0
backup_ceph_conf=/etc/ceph/ceph.conf
backup_ceph_user=cinder-backup
backup_ceph_chunk_size=134217728
backup_ceph_pool=backups
backup_ceph_stripe_unit=0
backup_ceph_stripe_count=0
restore_discard_excess_bytes=true
backup_driver=cinder.backup.drivers.ceph
api_paste_config=/etc/cinder/api-paste.ini
glance_host=17.11.154.120
glance_api_version=2
auth_strategy=keystone
debug=False
verbose=True
log_dir=/var/log/cinder
use_syslog=False
iscsi_ip_address=17.11.154.120
iscsi_helper=lioadm
volume_group=cinder-volumes
rbd_pool=volumes
rbd_user=cinder
rbd_ceph_conf=/etc/ceph/ceph.conf
rbd_flatten_volume_from_snapshot=false
rbd_secret_uuid=575b15f2-b2b1-48d0-9df9-29dea74333e8
rbd_max_clone_depth=5
rbd_store_chunk_size = 4
rados_connect_timeout = -1
glance_api_version = 2
volume_driver=cinder.volume.drivers.rbd.RBDDriver
sql_connection=mysql://cinder:password@17.11.154.120/cinder
sql_idle_timeout=3600
glance-api.conf

[DEFAULT]
verbose=True
dev=True
default_store=rbd
bind_host=0.0.0.0
bind_port=9292
log_file=/var/log/glance/api.log
backlog=4096
workers=24
show_image_direct_url=True
use_syslog=False
registry_host=0.0.0.0
registry_port=9191
notifier_strategy = rabbit
rabbit_host=17.11.154.120
rabbit_port=5672
rabbit_use_ssl=False
rabbit_userid=guest
rabbit_password=password
rabbit_virtual_host=/
rabbit_notification_exchange=glance
rabbit_notification_topic=notifications
rabbit_durable_queues=False
filesystem_store_datadir=/var/lib/glance/images/
rbd_store_ceph_conf = /etc/ceph/ceph.conf
rbd_store_user=glance
rbd_store_pool=images
rbd_store_chunk_size = 8
sql_connection=mysql://glance:<password>@17.11.154.120/glance
sql_idle_timeout=3600

[keystone_authtoken]
auth_host=17.11.154.120
auth_port=35357
auth_protocol=http
admin_tenant_name=services
admin_user=glance
admin_password=password
auth_uri=http://17.11.154.120:5000/

[paste_deploy]
flavor=keystone