
2011-2014 © PLUMgrid - Confidential Information

Extended BPF and Data Plane Extensibility:
An overview of networking and Linux
Fernando Sanchez
Principal SE, PLUMgrid Inc.
@fernandosanchez

2011-2014 © PLUMgrid - Confidential Information

Disclaimer
•  I am a networking systems engineer/architect

•  I just happen to be lucky enough to work close to the guys
working on/upstreaming these pieces of code into the kernel

•  This is mainly about networking and why/how to do it
with the latest updates to the linux kernel

•  Expect no corporate/product pitch…. Almost J

•  We can stay high-level or dive deep into APIs and code
(as much as I can handle!), so feedback is appreciated

2

“Please do not shoot the pianist. He is doing his best.”

Oscar Wilde (1854-1900)

2011-2014 © PLUMgrid - Confidential Information

Agenda

•  Lessons from Physical Networks: Traditional Data
Center Design and the effects of virtualization

•  Hypervisor Networking Layer: Virtual Switches,
Distributed Virtual Switches and Network Overlays

•  (E)BPF and its applicability to an Extensible
Networking Dataplane – From Virtual Switches to
Virtual Networks

•  A new Data Center Design

3

2011-2014 © PLUMgrid - Confidential Information

Lessons from Physical Networks:
Traditional Data Center Design and the effects of
virtualization

4

2011-2014 © PLUMgrid - Confidential Information

Server Virtualization

How does this affect the network?

2011-2014 © PLUMgrid - Confidential Information

Traditional Data Center: Characteristics

6

•  One host OS per server

•  Three tier (Access, Distribution,
Core) Networking Design

•  Traditional L2 and L3 protocols
•  spanning-tree issues, anyone?

•  HA based in physical server/link
deployments

2011-2014 © PLUMgrid - Confidential Information

Traditional Data Center: General Issues

7

•  Costly, Complex, and Constrained

•  Switch cross connects waste

 revenue generating ports

•  Scalability based on hardware and

space

•  Network sub-utilization

•  Slow L2/3 failure recovery

•  Layer 4/7 is centralized at core layer

•  Quickly reaching HW limits (#MACs,

#VLANs, etc.)

2011-2014 © PLUMgrid - Confidential Information

A Modern Data Center: Characteristics

8

•  Server Virtualization:

•  Multiple OS and VMs

•  Efficient Network Virtualization:
•  Multiple link utilization
•  Fast convergence
•  Increased uptime

•  Storage Virtualization:
•  Fast & efficient

•  New design requirements
needed!

Fully distributed network layer

2011-2014 © PLUMgrid - Confidential Information

Effects of Server Virtualization

Virtualization helped optimize compute but
added to the network issues:

•  Traffic Flows: East West and VM to VM
flows could cause hair-pinning of traffic

•  VM Segmentation: More VLAN and
MAC address issues

•  VM Management: Traditional systems
could not see past the hypervisor

•  Intra Server Security: How to secure
traffic within a server?

Fully distributed network layer

2011-2014 © PLUMgrid - Confidential Information

Hypervisor Networking Layer: Virtual Switches,
Distributed Virtual Switches and Network Overlays

10

2011-2014 © PLUMgrid - Confidential Information

A New Networking Layer
Your data plane matters … A LOT

vSwitches

Distributed vSwitches

vRouters

Distributed topologies

Extensible data plane

2011-2014 © PLUMgrid - Confidential Information

Virtual Switches

•  A Virtual Switch (vSwitch) is a software
component within a server that allows one inter-
virtual machine (VM) communication as well as
communication with external world

•  A vSwitch has a few key advantages:
•  Provides network functionalities right inside

the hypervisor layer
•  Operations are similar to that of the

hypervisor yet with control over network
functionality

•  Compared to a physical switch, it's easy to
roll out new functionality, which can be
hardware or firmware related Host

2011-2014 © PLUMgrid - Confidential Information

Open vSwitch

•  Open vSwitch is a
production quality, multilayer
virtual switch licensed under
the Apache 2.0 license

•  Enables massive network
automation

•  Supports distribution across
multiple physical servers

2011-2014 © PLUMgrid - Confidential Information

Inside a Compute Node

14

Compute Node

Kernel

Eth mgmt

vSwitch Kernel Module

Tenant VMs

VM VM VM
User

Vif

vSwitch
User Space
Component

2011-2014 © PLUMgrid - Confidential Information

From vSwitch to Distributed vSwitch

•  Logically stretches across
multiple physical servers

•  Provides L2 connectivity for
VMs that belong to the
same tenant within each
server and across them

•  Generally uses IP tunnel
Overlays (VxLAN, GRE) to
create isolated L2 broadcast
domains across L3
boundaries

15

VM VM VM VM VM VM

Distributed vSwitch

VM VM VM VM VM VM

2011-2014 © PLUMgrid - Confidential Information

How about L2+ Functions? “in-kernel switch” approach

16

Compute Node

Kernel

Eth mgmt

In Kernel Functions

Tenant VMs

VM VM VM
User

Vif

Advanced Functions

Advanced Functions

Dedicated Network Node

2011-2014 © PLUMgrid - Confidential Information

Extensible In-Kernel Functions

17

Compute Node

Kernel

Eth mgmt

Tenant VMs

VM VM VM
User

Vif

2011-2014 © PLUMgrid - Confidential Information

Extensible Data Plane Architecture

•  OVS is a great reference architecture however evolving
needs of large-scale clouds dictate for a data plane that
needs to be

•  Able to load and chain Virtual Network Functions dynamically

•  Extensible
•  In-kernel

•  E-BPF Technology https://lwn.net/Articles/603983

18

2011-2014 © PLUMgrid - Confidential Information

(E)BPF and its applicability to an Extensible
Networking Dataplane – From Virtual Switches to
Virtual Networks

19

2011-2014 © PLUMgrid - Confidential Information

Classic BPF

•  BPF - Berkeley Packet Filter

•  Introduced in Linux in 1997 in kernel version 2.1.75

•  Initially used as socket filter by packet capture tool tcpdump (via libpcap)

Use Cases:
•  socket filters (drop or trim packet and pass to user space)

–  used by tcpdump/libpcap, wireshark, nmap, dhcp, arpd, ...

•  In-kernel networking subsystems
–  cls_bpf (TC classifier) –QoS subsystem- , xt_bpf, ppp, team, ...

•  seccomp (chrome sandboxing)
–  introduced in 2012 to filter syscall arguments with bpf program

2011-2014 © PLUMgrid - Confidential Information

Extended BPF
•  New set of patches introduced in the Linux kernel since 3.15 (June 8th, 2014)

and into 3.19 (Feb 8th, 2015), 4.0 (April 12th, 2015) and into 4.1

•  More registers (64 bit), safety, … (next slide)

•  In-kernel JIT compiler (safe) à x86, ARM64, s390, powerpc*, MIPS* ….

•  “Universal in-kernel virtual machine”*

•  LLVM backend: any platform that LLVM compiles into will work. (GCC
backend in the works) à PORTABILITY!
Use Cases:
1.  networking
2.  tracing (analytics, monitoring, debugging)
3.  in-kernel optimizations
4.  hw modeling
5.  crazy stuff... *http://lwn.net/Articles/599755/

2011-2014 © PLUMgrid - Confidential Information

Extended BPF program = BPF instructions + BPF maps

•  BPF map: key/value storage of different types (hash, lpm, …)
•  value = bpf_table_lookup(table_id, key) – lookup key in a table

•  Userspace can read/modify the tables

•  More on this on later slide

BPF insns program (pre-3.15) Extended BPF insns program

2 registers + stack
32-bit registers
4-byte load/store to stack
1-8 byte load from packet
Conditional jump forward
+, -, *, … instructions

10 registers + stack
64-bit registers
1-8 byte load/store to stack
1-8 byte load/store to packet
Conditional jump fwd and backward
Same + signed_shift + bswap

•  BPF instructions improvements:

2011-2014 © PLUMgrid - Confidential Information

Extended BPF Networking Program Example
Fully Programmable Dataplane Access

Restrictive C program to:

•  obtain the protocol type (UDP, TCP, ICMP, …) from each packet

•  keep a count for each protocol in a “map”:

int bpf_prog1(struct __sk_buff *skb)
{

int index = load_byte(skb, ETH_HLEN +
offsetof(struct iphdr, protocol));

long *value;

value = bpf_map_lookup_elem(&my_map, &index);
if (value)

__sync_fetch_and_add(value, 1);

return 0;
}

Equivalent eBPF program
 struct bpf_insn_prog[] = {

BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 14 + 9 /* R0 = ip->proto */),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0,

-4), /* *(u32 *)(fp - 4) = r0 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /*

r2 = fp - 4 */
BPF_LD_MAP_FD(BPF_REG_1, map_fd),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,

BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */
BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW,

BPF_REG_0, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */
BPF_EXIT_INSN(),

 };

Load an incoming frame and
get the IP protocol as “index”
from it

Lookup that IP protocol “index” in an
existing map* and get current
“value”

If found, add 1 to the “value”

LLVM

GCC*
JIT

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/sockex2_kern.c

Blazing FAST
in-kernel
machine code!

 insns

2011-2014 © PLUMgrid - Confidential Information

•  BPF programs can attach to sockets, the traffic
control (TC) subsystem, kprobe, syscalls,
tracepoints…

•  Sockets can be STREAM (L4/UDP), DATAGRAM (L4/
TCP) or RAW (TC)

•  This allows to hook at different levels of the Linux
networking stack, providing the ability to act on traffic
that has or hasn’t been processed already by other
pieces of the stack

•  Opens up the possibility to implement network
functions at different layers of the stack

Hooking into the Linux networking stack (RX)

HW/veth/cont

USERSPACE

TAP/Raw (RO)

driver

netif_receive_skb()

TC / traffic control

Bridge hook /
 prerouting

IP / routing

K
ER

N
EL

SP
A

C
E

 insns 1

BPF

Socket (TCP/UDP)
 insns 5

BPF

 insns 2

BPF

 insns 3
 insns 4

2011-2014 © PLUMgrid - Confidential Information

•  BPF programs can attach to sockets, the traffic
control (TC) subsystem, kprobe, syscalls,
tracepoints…

•  Sockets can be STREAM (L4/UDP), DATAGRAM (L4/
TCP) or RAW (TC)

•  This allows to hook at different levels of the linux
networking stack, providing the ability to act on traffic
that has or hasn’t been processed already by other
pieces of the stack

•  Opens up the possibility to implement network
functions at different layers of the OSI stack

Hooking into the Linux networking stack (TX)

HW/veth/cont

USERSPACE

TAP/Raw (RO)

driver

dev_queue_xmit()

TC / traffic control

IP / routing

K
ER

N
EL

SP
A

C
E

 insns 1

BPF

Socket (TCP/UDP)

 insns 5

BPF

For simplicity, the following slides simplify
this view into a single “kernel networking
stack”

 insns 2

BPF

 insns 3
 insns 4

2011-2014 © PLUMgrid - Confidential Information

•  BPF Linux ‘call’ and set of in-kernel helper functions
define what BPF programs can do

int bpf(BPF_PROG_LOAD, union bpf_attr *attr, unsigned
int size);

•  BPF code itself acts as ‘glue’ between calls to in-kernel
helper functions

•  BPF helpers allow for additional functionality

•  ktime_get

•  packet_write

•  fetch

•  map_lookup/update/delete

(more on maps later)

Extended BPF system usage
Userspace “Call” and “Helpers”

 insns 1

stack

Kernel
space

HW/veth/cont

Enables “in-kernel VNFs”

2011-2014 © PLUMgrid - Confidential Information

int bpf(BPF_PROG_LOAD, union bpf_attr
*attr, unsigned int size);

•  struct bpf_attr defines the BPF program when it’s
passed onto the BPF call

struct { /* used by BPF_PROG_LOAD command */
__u32 prog_type; /* program type */
__u32 insn_cnt;
__aligned_u64 insns; /* 'struct insns *' */
__aligned_u64 license; /* 'const char *' */
__u32 log_level; /* verbosity level */
__u32 log_size;
__aligned_u64 log_buf;
};

Extended BPF Program definition ! struct bpf_attr
“TRACING” , “SOCKET”,…
Size of the program (in BPF instructions)
The BPF insns program itself (see previous slides)
License (allows to force to GPL or not load)

Logging details

insns

stack

Kernel
space

HW/veth/cont

2011-2014 © PLUMgrid - Confidential Information

Extended BPF “maps”
•  Maps are generic storage of different types for

sharing data (key/value pairs) between kernel
and userspace

•  The maps are accessed from user space via
BPF syscall, with commands:

•  create a map with given type and attributes and receive as
file descriptor:

map_fd = bpf(BPF_MAP_CREATE, union bpf_attr *attr,
u32 size)

•  Additional calls to perform operations on the map:
lookup key/value, update, delete, iterate, delete a map

•  userspace programs use this syscall to create/
access maps that BPF programs are
concurrently updating

 bpf_insn

stack

map_1

User
space

PHY
space

Kernel
space

Tables for “in-kernel VNFs”

2011-2014 © PLUMgrid - Confidential Information

Putting it all together -- Networking with BPF
Attach a program to a socket

•  User creates an eBPF program and obtains a
union bpf_attr (previous slides)
that includes the insns BPF instruction set for the program.

•  A userspace program loads the eBPF program:
int bpf(BPF_PROG_LOAD, union bpf_attr *attr, unsigned int
size);

•  It also creates a map, controlled with a file descriptor
map_fd = bpf(BPF_MAP_CREATE, union bpf_attr *attr, u32 size)

•  Create a socket (varies depending on socket type):
socket = socket(PF_INET, SOCK_STREAM,IPPROTO_TCP)

•  Attach the BPF program to a socket
setsockopt(socket, SOL_SOCKET, SO_ATTACH_BPF, &fd,
sizeof(fd));

•  Enjoy in-kernel networking nirvana ☺

insns

sock

filter

map_1

User
space

Kernel
space

HW/veth/cont

2011-2014 © PLUMgrid - Confidential Information

Additional BPF Networking Usage Examples

•  https://www.kernel.org/doc/Documentation/
networking/filter.txt

•  https://lkml.org/lkml/2014/11/27/10

•  http://git.kernel.org/cgit/linux/kernel/git/shemminger/
iproute2.git/tree/examples/bpf/bpf_prog.c?h=net-
next

2011-2014 © PLUMgrid - Confidential Information

eBPF framework for networking
Building Virtual Network Infrastructure

µController

attachment points

attachment points

eB
P

F
E

xe
cu

tio
n

C
on

ta
in

er

Kernel space

User space

IO context

IO Module helpers
(optional) IO Module

(dynamically loaded)

Open repo of
“IO Modules”

Encap/Tunneling

QoS / sched.

IN-KERNEL VNFs

Switching
Routing
Firewall

 insns 1

 insns 2

 insns 3

2011-2014 © PLUMgrid - Confidential Information

A new Data Center Design
Physical and Virtual Network Infrastructure

32

2011-2014 © PLUMgrid - Confidential Information

PH
YS

IC
A

L
IN

FR
A

ST
R

U
C

TU
R

E

VI
EW

VI
R

TU
A

L
IN

FR
A

ST
R

U
C

TU
R

E

VI
EW

•  QoS, Bandwidth
•  Latency
•  Multicast
•  Capacity
•  Connectivity

•  On-Demand
•  Multi Tenant
•  Automated
•  Self Service
•  Secure
•  Distributed

Overlay Network

TENANT
NETWORKS

The new Data Center
Physical and Virtual Network Infrastructure

2011-2014 © PLUMgrid - Confidential Information

Physical Network Infrastructure

•  Towards a non-blocking transport “fabric”

•  Life-spine architecture for optimal
connectivity

•  “Install and maintain”

•  Well understood routing protocols

•  New pods can easily be rolled out with a flat
networking design

•  Multi-vendor

Virtual Network Infrastructure
•  Service provisioning layer

•  Rich Networking topology to satisfy the most
stringent application requirement

•  Automatic service-chaining

•  On-demand provisioning (devops model)

•  Easy-to-manage operational model, upgrade
cycles & fault containment

34

The new Data Center
Physical and Virtual Network Infrastructure

2011-2014 © PLUMgrid - Confidential Information

Virtual Network Infrastructure Application:
Multitenant Virtual Networks

PH
YS

IC
A

L
IN

FR
A

ST
R

U
C

TU
R

E

VI
EW

VI
R

TU
A

L
IN

FR
A

ST
R

U
C

TU
R

E

VI
EW

Tenant 1 Tenant 2 Tenant 3

VM VM VM VM

Internet

VM VM

VM

VM

2011-2014 © PLUMgrid - Confidential Information

Physical Network Infrastructure
Insights from Web-scale deployments

•  Small efficient building blocks

•  Highly-modular

•  Scalable with a non-blocking
architecture

•  Automation, automation &
automation

36

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

2011-2014 © PLUMgrid - Confidential Information

Our Vision

37

Thank You

