gg PLUMGgrid

4

Y - nd’PF and Data Plane Extensibility:
An overview of n%tworking and Linux

Fernando Sanchez
Principal SE, PLUMgrid Inc.
@fernandosanchez




- | am a networking systems engineer/architect

- | just happen to be lucky enough to work close to the guys
working on/upstreaming these pieces of code into the kernel

- This is mainly about networking and why/how to do it
with the latest updates to the linux kernel

- Expect no corporate/product pitch.... Aimost ©

- We can stay high-level or dive deep into APIs and code

(as much as | can handle!), so feedback is appreciated

“Please do not shoot the pianist. He is doing his best.”

Oscar Wilde (1854-1900)



- Lessons from Physical Networks: Traditional Data

Center Design and the effects of virtualization

- Hypervisor Networking Layer: Virtual Switches,

Distributed Virtual Switches and Network Overlays

- (E)BPF and its applicability to an Extensible

Networking Dataplane — From Virtual Switches to
Virtual Networks

- A new Data Center Design



hysical Networks:

Center Design and the effects of




Server Virtualization

Figure 2.  Global Data Center Traffic by Destination

Virtual Machines

Data
Center-

Virtual Machines Virtual Machines
to-User Within Data
: Data
: & 76.7%
: Virtualization Server Virtualization Server Virtualization Server enter-to-
Data
. - Center
6.6%
Physlcal Physical Physical
Serverl Server2 ,-' Server N
........................................ >
Shared Storage

Source: Cisco Global Cloud Index, 2013-2018

How does this affect the network?



Traditional Data Center: Characteristics

* One host OS per server

* Three tier (Access, Distribution,
Core) Networking Design

* Traditional L2 and L3 protocols
* Spanning-tree issues, anyone?

* HA based in physical server/link
deployments

&



Traditional Data Center: General Issues

»  Costly, Complex, and Constrained

»  Switch cross connects waste

revenue generating ports

« Scalability based on hardware and

space

Network sub-utilization

Slow L2/3 failure recovery o S S e M
i i e
Layer 4/7 is centralized at core layer “ﬁ"ep‘ms*’ ﬂﬂ Hﬂ ﬂﬂ Hﬂ

Quickly reaching HW limits (#MACs,
> #VLANS, etc.
& s el




A Modern Data Center: Characteristics

« Server Virtualization: -
* Multiple OS and VMs s D N z

* Efficient Network Virtualization:
* Multiple link utilization
* Fast convergence
* Increased uptime

- Storage Virtualization:
- Fast & efficient

* New design requirements
needed!

&



E?yn: INTERNET
Virtualization helped optimize compute but e IO NN :
added to the network issues: e 5 - :
- Traffic Flows: East Westand VM to VM ™ / =
flows could cause hair-pinning of traffic
nk active and available
. VM Segmentation: More VLAN and __ = 7 S 7 < S\ [ TN
MAC address issues Layer = |
- VM Management: Traditional systems __/\ J<71™ romed Ser SR <X S
could not see past the hypervisor o
Arrays
- Intra Server Security: How to secure |, ... Ll istrib n orkcl) yern
traffic within a server? (05 hoos)— i '] L s|\Ys|
A AllA
5 7 4B oo ([71]7 EE o|?

& dlk



Hype or N.Norkmg Layer: Virtual Switches,
Distributed Virtual Switches and Network Overlays




A New Networking Layer

Your data plane matters ... ALOT

«SASR

vSwitches vRouters Extensible data plane

Distributed vSwitches Distributed topologies



Virtual Switches

- AVirtual Switch (vSwitch{ is a software

component within a server that allows one inter-
virtual machine (VM) communication as well as
communication with external world

A vSwitch has a few key advantages:

Provides network functionalities right inside
the hypervisor layer

Operations are similar to that of the

hypervisor yet with control over network
functionality

Compared to a physical switch, it's easy to
roll out new functionality, which can be
hardware or firmware rélated

Physical NIC Host

/

Network




Open vSwitch

- Open vSwitch is a
production quality, multilayer
virtual switch licensed under
the Apache 2.0 license

- Enables massive network

automation

- Supports distribution across
multiple physical servers

m Security: VLAN

isolation, traffic filtering

\ 4

Monitoring: Netflow,
%, SFlow, SPAN, RSPAN

vy

QosS: traffic queuing
and traffic shaping

@

\ v,

Automated Control:
OpenFlow, OVSDB
mgmt. protocol

4




Inside a Compute Node

Compute Node
brag Tenant VMs
vSwitch
° User Space
MVM Component _ User
) U i ............... 1 . Vif
vmware Kernel
ESXi
Oten
Server™ vSwitch Kernel Module
-- Microsoft P
.. Hyper-V

gg mgmt Eth



From vSwitch to Distributed vSwitch

gflcall y stretches across
multiple physical servers

- Provides L2 connectivity for
VMs that belong to the
same tenant within each
server and across them

- Generally uses IP tunnel
Overlays (VXLAN, GRE) to
create isolated L2 broadcast
domains across L3
boundaries




How about L2+ Functions? “in-kernel switch” approach

Dedicated Network Node

§
-
OO
¥
=

Advanced Functions

Compute Node

Tenant VMs
j, L 2

Advanced Functions

In Kernel Functions




Extensible In-Kernel Functions

Compute Node
Tenant VMs




Extensible Data Plane Architecture

- OVS is a great reference architecture however evolving
needs of large-scale clouds dictate for a data plane that
needs to be

- Able to load and chain Virtual Network Functions dynamically
- Extensible

- In-kernel

- E-BPF Technology https://lwn.net/Articles/603983




'[tiapplicability to an Extensible

aplane — From Virtual Switches to
Virtual Networks




Classic BPF

- BPF - Berkeley Packet Filter

Introduced in Linux in 1997 in kernel version 2.1.75

- Initially used as socket filter by packet capture tool tcpdump (via libpcap)

&

Use Cases:

socket filters (drop or trim packet and pass to user space)
— used by tcpdump/libpcap, wireshark, nmap, dhcp, arpd, ...

In-kernel networking subsystems
— cls_bpf (TC classifier) —QoS subsystem- , xt_bpf, ppp, team, ...

seccomp (chrome sandboxing)
— introduced in 2012 to filter syscall arguments with bpf program



- New set of patches introduced in the Linux kernel since 3.15 (June 8th, 2014)
and into 3.19 (Feb 8t 2015), 4.0 (April 12, 2015) and into 4.1

- More registers (64 bit), safety, ... (next slide)

- In-kernel JIT compiler (safe) > x86, ARM64, s390, powerpc*, MIPS* ....

- “Universal in-kernel virtual machine”

LLVM backend: any platform that LLVM compiles into will work. (GCC
backend in the works) > PORTABILITY!

Use Cases:

1. networking

2. tracing (analytics, monitoring, debugging)

3. in-kernel optimizations

4.  hw modeling

5. crazy stuff... *http://lwn.net/Articles/599755/



BPF program = BPF instructions + BPF maps

« BPF instructions improvements:

BPF program (pre-3.15) Extended BPF program

2 registers + stack 10 registers + stack

32-bit registers 64-bit registers

4-byte load/store to stack 1-8 byte load/store to stack

1-8 byte load from packet 1-8 byte load/store to packet
Conditional jump forward Conditional jump fwd and backward
+, -, *, ... instructions Same + signed_shift + bswap

- BPF map: key/value storage of different types (hash, Ipm, ...)
 value = bpf table lookup(table id, key) —lookup key in a table
Userspace can read/modify the tables

More on this on later slide

&



Extended BPF Networking Program Example

Fully Programmable Dataplane Access
Restrictive C program to: Equivalent eBPF program

- obtain the protocol type (UDP, TCP, ICMP, ...) from each packet ~ Struct bpf 1nSn prog[] = {
BPF_MOV64 REG(BPF_REG 6, BPF REG 1),

BPF LD ABS(BPF B, 14 + 9 /* R0 = ip->proto */),
BPF_STX MEM(BPF_W, BPF REG 10, BPF REG 0,
-4), /* *(u32 *)(fp - 4) = r0 */
. BPF_MOV64_ REG(BPF_REG 2, BPF_REG_10),
int bpf_progl(struct sk buff *skb) BPF_ALU64 IMM(BPF_ADD, BPF REG 2, -4), /*
L r2 = fp - 4 */
BPF_LD MAP_ FD(BPF_REG 1, map_f£d),
BPF_RAW_INSN(BPF_JMP | BPF CALL, 0, 0, 0,
BPF FUNC map_ lookup elem),
BPF_JMP IMM(BPF _JEQ, BPF REG 0, 0, 2),
BPF_MOV64 IMM(BPF REG 1, 1), /* rl = 1 */
BPF_RAW INSN(BPF_STX | BPF XADD | BPF DW,
BPF_REG 0, BPF REG 1, 0, 0),
BPF_MOV64 IMM(BPF_REG 0, 0), /* r0 = 0 */
BPF_EXIT INSN(),

- keep a count for each protocol in a “map”:

} }i
insns
Load an incoming frame and  LoOkup that IP protocol “index” in an LLVM - . Blazi
o . azing FAST
get the IP protocol as “index” £Xisting map* and get current JIT - = K 9 f
from it “value” . 0 - INn- er_ne
If found, add 1 td the “value’ GCC : : machine code!

@ https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.qgit/tree/samples/bpf/sockex2_kern.c



Hooking into the Linux networking stack (RX)
ERSPACE

BPF programs can attach to sockets, the traffic U
control (TC) subsystem, kprobe, syscalls, @ ======seny
tracepoints...

Sockets can be STREAM (L4/UDP), DATAGRAM (L4/
TCP) or RAW (TC)

This allows to hook at different levels of the Linux
networking stack, providing the ability to act on traffic
that has or hasn’t been processed already by other
pieces of the stack

Opens up the possibility to implement network
functions at different layers of the stack

P socket (TCPIUDP : E
: :

IP / routing "mEmmmn

insns 4

Bridge hook / 11’1: EEEEEN
prerouting ingrea
r '-

TC / traffic control _ 1 q‘_.:_ f '8 FE

» T DR IR = ->: :

netif_receive_skb() insns 1

BPF

driver

HW/veth/cont



Hooking into the Linux networking stack (TX)

BPF programs can attach to sockets, the traffic U SERSOEFAG . o ienieas
control (TC) subsystem, kprobe, syscalls,
tracepoints...

IP / routing - @ =BPF

JEEEEEEED
insns 5

Sockets can be STREAM (L4/UDP), DATAGRAM (L4/
TCP) or RAW (TC)

This allows to hook at different levels of the linux
networking stack, providing the ability to act on traffic
that has or hasn’t been processed already by other

pieces of the stack )
dev_queue_xmit()

Opens up the possibility to implement network
functions at different layers of the OSI stack

For simplicity, the following slides simplify
this view into a single “kernel networking

” o |
Sta Ck driver iilnlslnlsl ll.
\Q.g €==- m HW/veth/cont



Extended BPF system usage

Userspace “Call” and “Helpers”

BPF Linux ‘call’ and set of in-kernel helper functions Enables “in-kernel VN FS”

define what BPF programs can do

int bpf (BPF_PROG_LOAD, union bpf attr *attr, unsigned
int size);
;IIIIIIIII

BPF code itself acts as ‘glue’ between calls to in-kernel

helper functions stack g

" Kernel
insns 1 Space

|
|
|
|
|
IIII1IIIID
v

BPF helpers allow for additional functionality

ktime get

n
i
i
i
L
1
i
1
i
I
i
|

packet write

fetch

map lookup/update/delete HW/veth/cont

(more on maps later)

&



Extended BPF Program definition 2> struct bpf attr

“TRACING” , “SOCKET",...
Size of the program (in BPF instructions)
The BPF insns program itself (see previous slides)

int bpf(BPF_PROG_LOAD, union bpf attr
*attr, unsigned int size); License (allows to force to GPL or not load)

Logging details

;IIIIIIIII.

- struct bpf_attr defines the BPF program when it's

passed onto the BPF call . -
u
n u
]
struct { /* used by BPF_PROG_LOAD command */ o _r' >
<ZIM32Prog _type; /* program type */ T - I
~ZIIU327insn_cnt; T - . Kernel
- bty LU DU DR DR P R R e P e e D DD ittt SEEEEEEEEESR
<z_dligned u6s insns; /*  struct insms %' /.= insns space
<aligned u6d Licenss; /% 'const char £ x/iw
__u32 log-level; /* verbosity level-*/-_____
(__u32 log_size;
_"aligned u64 log _buf; -
1 2
HW/veth/cont




Extended BPF “maps”

- Maps are generic storage of different types for Tables for “in-kernel VNFs”
sharing data (key/value pairs) between kernel

and userspace

n

- The maps are accessed from user space via
BPF syscall, with commands:

HIIITEE

—F User

space

create a map with given type and attributes and receive as
file descriptor: stack

Kernel
bpf insn Space

map_ fd = bpf(BPF_MAP CREATE, union bpf attr *attr,
u32 size)

Additional calls to perform operations on the map:
lookup key/value, update, delete, iterate, delete amap

_______r._>
I
I
I
I
v
I
v

- userspace programs use this syscall to create/ PHY
access maps that BPF programs are
concurrently updating sSpace

&



Putting it all together -- Networking with BPF

Attach a program to a socket

- User creates an eBPF program and obtains a
union bpf_ attr (previous slides)
that includes the insns BPF instruction set for the program.

- Auserspace program loads the eBPF program: e User
int bpf (BPF_PROG_LOAD, union bpf attr *attr, unsigned int = —

size); Space

It also creates a map, controlled with a file descriptor
map fd = bpf (BPF_MAP CREATE, union bpf attr *attr, u32 size) filter&"") >

Kernel
space

Create a socket (varies depending on socket type):
socket = socket(PF_INET, SOCK STREAM, IPPROTO_TCP)

Attach the BPF program to a socket

setsockopt (socket, SOL SOCKET, SO ATTACH BPF, &fd,
sizeof(£fd));

sock

HW/veth/cont

Enjoy in-kernel networking nirvana ©

&



Additional BPF Networking Usage Examples

- https://www.kernel.org/doc/Documentation/
networking/filter.txt

- https://Ikml.org/lkml/2014/11/27/10

- http://git.kernel.org/cqit/linux/kernel/git/shemminger/
iproute?.qit/tree/examples/bpf/bpf prog.c?h=net-
next




eBPF framework for networking

Building Virtual Network Infrastructure

Open repo of
“IO Modules”

uController 10 Module helpers
10 Module : — (optiona|)
(dynam'ca”y |0 ded) .............................................................................................................................
User space
Kernel space
IN-KERNEL VNFs
_— Encap/Tunneling c 5
B Switching E S5
: 638
= Routing © %é
Bl Firewall
“% QoS / sched. _
Q‘ attachment points
&



A new Data Ce&r Design
Physical and Virtual Network Infrastructure




The new Data Center

Physical and Virtual Network Infrastructure

TENANT
NETWORKS

* On-Demand
* Multi Tenant
» Automated
» Self Service
» Secure

» Distributed

VIRTUAL
INFRASTRUCTURE
VIEW

* QoS, Bandwidth
» Latency

* Multicast

+ Capacity

» Connectivity

PHYSICAL
INFRASTRUCTURE
VIEW

&



The new Data Center

Physical and Virtual Network Infrastructure

Physical Network Infrastructure
- Towards a non-blocking transport “fabric”

- Life-spine architecture for optimal
connectivity

- “Install and maintain”
- Well understood routing protocols

- New pods can easily be rolled out with a flat
networking design

« Multi-vendor

&

Virtual Network Infrastructure

- Service provisioning layer

Rich Networking topology to satisfy the most
stringent application requirement

- Automatic service-chaining

+ On-demand provisioning (devops model)

Easy-to-manage operational model, upgrade
cycles & fault containment

34



Virtual Network Infrastructure Application:

Multitenant Virtual Networks

Tenant 1 Tenant 2 Tenant 3

VIRTUAL
INFRASTRUCTURE
VIEW

PHYSICAL
INFRASTRUCTURE
VIEW

&



Physical Network Infrastructure

Insights from Web-scale deployments

Small efficient building blocks

Highly-modular

N\

Scalable with a non-blocking ="
architecture

Automation, automation & e
automation

gg https://code.facebook.com/posts/3603462741 45943/introducing-data-center-fabric-the—next-generatioh:facebook-data-center-network/
36



g\ PLUMGgrid



