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New or improved features (in last year)

Erasure Coding

Snapshots

NFS-Ganesha

RDMA

SSD support



  

Erasure Coding

“distributed software RAID”
● Alternative to RAID controllers or 3-way replication
● Cuts storage cost/TB, but computationally expensive
● Better Sequential Write performance for some workloads
● Roughly same sequential Read performance (depends on mountpoints)
● In RHGS 3.1 avoid Erasure Coding for pure-small-file or pure random I/O workloads
● Example use cases are archival, video capture



  

Disperse translator spreads EC stripes in file across hosts
Example: EC4+2

E[1] E[2] E[6]

E[1] E[2] E[6]

...

Stripe 1

Stripe N

Server 1 Server 2 ...
Server 6 

Brick 1 Brick 2 Brick 6Brick 1 Brick 2 Brick 6



  

EC large-file perf summary  2-replica write limit 3-replica write limit



  

A tale of two mountpoints (per server)
stacked CPU utilization graph by CPU core, 12 cores
glusterfs hot thread limits 1 mountpoint's throughput

1 mountpoint per server 4 mountpoints per server



  

A tale of two mountpoints
why the difference in CPU utilization?



  

SSDs as bricks

● Multi-thread-epoll = multiple threads working in each client mountpoint and server brick
● Can be helpful for SSDs or any other high-IOPS workload
● glusterfs-3.7 with single 2-socket Sandy Bridge using 1 SAS SSD (SANDisk Lightning) 
●



  

RDMA enhancements

● Gluster has had RDMA in some form for a long time
● Gluster-3.6 added librdmacm support – broadens supported hardware
● By Gluster 3.7, memory pre-registration reduces latency



  

JBOD Support

● RHGS has traditionally used H/W RAID for brick storage, with replica-2 protection. 
● RHGS 3.0.4 has JBOD+replica-3 support.
● H/W RAID problems:

– Proprietary interfaces for managing h/w RAID
– Performance impact with many concurrent streams

● JBOD+replica-3 shortcomings:
– Each file on one disk, low throughput for serial workloads
– Large number of bricks in the volume; problematic for some workloads

● JBOD+replica-3 expands the set of workloads that RHGS can handle well
– Best for highly-concurrent, large-file read workloads



  

● JBOD+replica-3 outperforms RAID-6+replica-2 at higher thread counts
● For large-file workload



  

NFS-Ganesha

● NFSv3 access to RHGS volumes supported so far with gluster native NFS server
● NFS-Ganesha integration with FSAL-gluster expands supported access protocols

– NFSv3 – has been in Technology Preview
– NFSv4, NFSv4.1, pNFS

● Access path uses libgfapi, avoids FUSE



  

Ganesha-Gluster vs Ganesha-VFS vs Kernel-NFS



  

Snapshots

● Based on device-mapper thin-provisioned snapshots
– Simplified space management for snapshots
– Allow large number of snapshots without performance degradation

● Required change from traditional LV to thin LV for RHGS brick storage
– Performance impact? Typically 10-15% for large file sequential read as a result of 

fragmentation
● Snapshot performance impact

– Mainly due to writes to “shared” blocks, copy-on-write triggered on first write to a 
region after snapshot

– Independent of number of snapshots in existence



  

Improved rebalancing

● Rebalancing lets you add/remove hardware from an online Gluster volume
● Important for scalability, redeployment of hardware resources
● Existing algorithm had shortcomings

– Did not work well for small files
– Was not parallel enough
– No throttle

● New algorithm solves these problems
– Executes in parallel on all bricks
– Gives you control over number of concurrent I/O requests/brick
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Best practices for sizing, install, administration
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Configurations to avoid with Gluster (today)

● Super-large RAID volumes (e.g. RAID60)
● – example: RAID60 with 2 striped RAID6 12-disk components
● – Single glusterfsd process serving a large number of disks

– recommend separate RAID LUNs instead
● JBOD configuration with very large server count
● – Gluster directories are still spread across every brick
● – with JBOD, that means every disk!  
● – 64 servers x 36 disks/server = ~2300 bricks
● – recommendation: use RAID6 bricks of 12 disks each
● – even then, 64x3 = 192 bricks, still not ideal for anything but large files



  

Test methodology

● How well does RHGS work for your use-case? 
● Some benchmarking tools:

– Use tools with a distributed mode, so multiple clients can put load on servers
– Iozone (large-file sequential workloads), smallfile benchmark, fio (better than iozone 

for random i/o testing.
● Beyond micro-benchmarking

– SPECsfs2014 provides approximation to some real-life workloads
– Being used internally
– Requires license

● SPECsfs2014 provides mixed-workload generation in different flavors
● VDA (video data acquisition), VDI (virtual desktop infrastructure), SWBUILD 
(software build)



  

Application filesystem usage patterns to avoid with Gluster

● Single-threaded application – one-file-at-a-time processing
● – uses only small fraction (1 DHT subvolume) of Gluster hardware

Tiny files – cheap on local filesystems, expensive on distributed filesystems
● Small directories
● – creation/deletion/read/rename/metadata-change cost  x brick count!
● – large file:directory ratio not bad as of glusterfs-3.7
● Using repeated directory scanning to synchronize processes on different clients
● – Gluster 3.6 (RHS 3.0.4) does not yet invalidate metadata cache on clients

file:///home/mpillai/directory


  

Initial Data ingest

● Problem: applications often have previous data, must load Gluster volume
● Typical methods are excruciatingly slow (see lower right!) 
● – Example: single mountpoint, rsync -ravu
● Solutions:

– - for large files on glusterfs, use largest xfer size
– - copy multiple subdirectories in parallel
– - multiple mountpoints per client
– - multiple clients
– - mount option "gid-timeout=5" 
– - for glusterfs, increase client.event-threads to 8



  

SSDs as bricks

● Avoid use of storage controller WB cache
● separate volume for SSD
● Check “top -H”,  look for hot glusterfsd threads on server with SSDs
● Gluster tuning for SSDs: server.event-threads > 2
● SAS SSD:

– Sequential I/O: relatively low sequential write transfer rate
– Random I/O: avoids seek overhead, good IOPS
– Scaling:  more SAS slots => greater TB/host, high aggregate IOPS

● PCI:
– Sequential I/O: much higher transfer rate since shorter data path

Random I/O: lowest latency yields highest IOPS
– Scaling: more expensive, aggregate IOPS limited by PCI slots

●



  

High-speed networking > 10 Gbps

● Don't need RDMA for 10-Gbps network, better with >= 40 Gbps
● Infiniband alternative to RDMA – ipoib
● -  Jumbo Frames (MTU=65520) – all switches must support
● -  “connected mode” 
● -  TCP will get you to about ½ – ¾ 40-Gbps line speed
● 10-GbE bonding – see gluster.org how-to
● - default bonding mode 0 – don't use it
● - best modes are 2 (balance-xor), 4 (802.3ad), 6 (balance-alb)
● FUSE (glusterfs mountpoints) – 

– No 40-Gbps line speed from one mountpoint
– Servers don't run FUSE => best with multiple clients/server

● NFS+SMB servers use libgfapi, no FUSE overhead



  

Networking – Putting it all together



  

Features coming soon
To a Gluster volume near you

(i.e. glusterfs-3.7 and later)



  

Lookup-unhashed fix



  



  

Bitrot detection – in glusterfs-3.7 = RHS 3.1

● Provides greater durability for Gluster data (JBOD)
● Protects against silent loss of data
● Requires signature on replica recording original checksum
● Requires periodic scan to verify data still matches checksum
● Need more data on cost of the scan
● TBS – DIAGRAMS, ANY DATA?



  

A tale of two mountpoints - sequential write performance
And the result... drum roll.... 



  

Balancing storage and networking performance

● Based on workload
– Transactional or small-file workloads 

● don't need > 10 Gbps 
● Need lots of IOPS (e.g. SSD)

– Large-file sequential workloads (e.g. video capture)
● Don't need so many IOPS
● Need network bandwidth

– When in doubt, add more networking, cost < storage



  

Cache tiering

● Goal: performance of SSD with cost/TB of spinning rust
● Savings from Erasure Coding can pay for SSD!
● Definition: Gluster tiered volume consists of two subvolumes:
● - “hot” tier: sub-volume  low capacity, high performance
● - “cold” tier:  sub-volume – high capacity, low performance
● -- promotion policy: migrates data from cold tier to hot tier
● -- demotion policy: migrates data from hot tier to cold tier
● - new files are written to hot tier initially unless hot tier is full



  

perf enhancements
unless otherwise stated, 

UNDER CONSIDERATION, NOT IMPLEMENTED
● Lookup-unhashed=auto in Glusterfs 3.7 today, in RHGS 3.1 soon

–Eliminates LOOKUP per brick during file creation, etc.
● JBOD support – Glusterfs 4.0 – DHT V2 intended to eliminate spread of 
directories across all bricks

● Sharding – spread file across more bricks (like Ceph, HDFS)
● Erasure Coding – Intel instruction support, symmetric encoding, bigger chunk 
size

● Parallel utilities – examples are parallel-untar.py and parallel-rm-rf.py
● Better client-side caching – cache invalidation starting in glusterfs-3.7
● YOU CAN HELP DECIDE!  Express interest and opinion on this 
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