

Red Hat Gluster Storage performance

Manoj Pillai and Ben England
Performance Engineering
June 25, 2015

New or improved features (in last year)

Erasure Coding

Snapshots

NFS-Ganesha

RDMA

SSD support

Erasure Coding

“distributed software RAID”
● Alternative to RAID controllers or 3-way replication
● Cuts storage cost/TB, but computationally expensive
● Better Sequential Write performance for some workloads
● Roughly same sequential Read performance (depends on mountpoints)
● In RHGS 3.1 avoid Erasure Coding for pure-small-file or pure random I/O workloads
● Example use cases are archival, video capture

Disperse translator spreads EC stripes in file across hosts
Example: EC4+2

E[1] E[2] E[6]

E[1] E[2] E[6]

...

Stripe 1

Stripe N

Server 1 Server 2 ...
Server 6

Brick 1 Brick 2 Brick 6Brick 1 Brick 2 Brick 6

EC large-file perf summary 2-replica write limit 3-replica write limit

A tale of two mountpoints (per server)
stacked CPU utilization graph by CPU core, 12 cores
glusterfs hot thread limits 1 mountpoint's throughput

1 mountpoint per server 4 mountpoints per server

A tale of two mountpoints
why the difference in CPU utilization?

SSDs as bricks

● Multi-thread-epoll = multiple threads working in each client mountpoint and server brick
● Can be helpful for SSDs or any other high-IOPS workload
● glusterfs-3.7 with single 2-socket Sandy Bridge using 1 SAS SSD (SANDisk Lightning)
●

RDMA enhancements

● Gluster has had RDMA in some form for a long time
● Gluster-3.6 added librdmacm support – broadens supported hardware
● By Gluster 3.7, memory pre-registration reduces latency

JBOD Support

● RHGS has traditionally used H/W RAID for brick storage, with replica-2 protection.
● RHGS 3.0.4 has JBOD+replica-3 support.
● H/W RAID problems:

– Proprietary interfaces for managing h/w RAID
– Performance impact with many concurrent streams

● JBOD+replica-3 shortcomings:
– Each file on one disk, low throughput for serial workloads
– Large number of bricks in the volume; problematic for some workloads

● JBOD+replica-3 expands the set of workloads that RHGS can handle well
– Best for highly-concurrent, large-file read workloads

● JBOD+replica-3 outperforms RAID-6+replica-2 at higher thread counts
● For large-file workload

NFS-Ganesha

● NFSv3 access to RHGS volumes supported so far with gluster native NFS server
● NFS-Ganesha integration with FSAL-gluster expands supported access protocols

– NFSv3 – has been in Technology Preview
– NFSv4, NFSv4.1, pNFS

● Access path uses libgfapi, avoids FUSE

Ganesha-Gluster vs Ganesha-VFS vs Kernel-NFS

Snapshots

● Based on device-mapper thin-provisioned snapshots
– Simplified space management for snapshots
– Allow large number of snapshots without performance degradation

● Required change from traditional LV to thin LV for RHGS brick storage
– Performance impact? Typically 10-15% for large file sequential read as a result of

fragmentation
● Snapshot performance impact

– Mainly due to writes to “shared” blocks, copy-on-write triggered on first write to a
region after snapshot

– Independent of number of snapshots in existence

Improved rebalancing

● Rebalancing lets you add/remove hardware from an online Gluster volume
● Important for scalability, redeployment of hardware resources
● Existing algorithm had shortcomings

– Did not work well for small files
– Was not parallel enough
– No throttle

● New algorithm solves these problems
– Executes in parallel on all bricks
– Gives you control over number of concurrent I/O requests/brick

 16

Best practices for sizing, install, administration
16

Configurations to avoid with Gluster (today)

● Super-large RAID volumes (e.g. RAID60)
● – example: RAID60 with 2 striped RAID6 12-disk components
● – Single glusterfsd process serving a large number of disks

– recommend separate RAID LUNs instead
● JBOD configuration with very large server count
● – Gluster directories are still spread across every brick
● – with JBOD, that means every disk!
● – 64 servers x 36 disks/server = ~2300 bricks
● – recommendation: use RAID6 bricks of 12 disks each
● – even then, 64x3 = 192 bricks, still not ideal for anything but large files

Test methodology

● How well does RHGS work for your use-case?
● Some benchmarking tools:

– Use tools with a distributed mode, so multiple clients can put load on servers
– Iozone (large-file sequential workloads), smallfile benchmark, fio (better than iozone

for random i/o testing.
● Beyond micro-benchmarking

– SPECsfs2014 provides approximation to some real-life workloads
– Being used internally
– Requires license

● SPECsfs2014 provides mixed-workload generation in different flavors
● VDA (video data acquisition), VDI (virtual desktop infrastructure), SWBUILD
(software build)

Application filesystem usage patterns to avoid with Gluster

● Single-threaded application – one-file-at-a-time processing
● – uses only small fraction (1 DHT subvolume) of Gluster hardware

Tiny files – cheap on local filesystems, expensive on distributed filesystems
● Small directories
● – creation/deletion/read/rename/metadata-change cost x brick count!
● – large file:directory ratio not bad as of glusterfs-3.7
● Using repeated directory scanning to synchronize processes on different clients
● – Gluster 3.6 (RHS 3.0.4) does not yet invalidate metadata cache on clients

file:///home/mpillai/directory

Initial Data ingest

● Problem: applications often have previous data, must load Gluster volume
● Typical methods are excruciatingly slow (see lower right!)
● – Example: single mountpoint, rsync -ravu
● Solutions:

– - for large files on glusterfs, use largest xfer size
– - copy multiple subdirectories in parallel
– - multiple mountpoints per client
– - multiple clients
– - mount option "gid-timeout=5"
– - for glusterfs, increase client.event-threads to 8

SSDs as bricks

● Avoid use of storage controller WB cache
● separate volume for SSD
● Check “top -H”, look for hot glusterfsd threads on server with SSDs
● Gluster tuning for SSDs: server.event-threads > 2
● SAS SSD:

– Sequential I/O: relatively low sequential write transfer rate
– Random I/O: avoids seek overhead, good IOPS
– Scaling: more SAS slots => greater TB/host, high aggregate IOPS

● PCI:
– Sequential I/O: much higher transfer rate since shorter data path

Random I/O: lowest latency yields highest IOPS
– Scaling: more expensive, aggregate IOPS limited by PCI slots

●

High-speed networking > 10 Gbps

● Don't need RDMA for 10-Gbps network, better with >= 40 Gbps
● Infiniband alternative to RDMA – ipoib
● - Jumbo Frames (MTU=65520) – all switches must support
● - “connected mode”
● - TCP will get you to about ½ – ¾ 40-Gbps line speed
● 10-GbE bonding – see gluster.org how-to
● - default bonding mode 0 – don't use it
● - best modes are 2 (balance-xor), 4 (802.3ad), 6 (balance-alb)
● FUSE (glusterfs mountpoints) –

– No 40-Gbps line speed from one mountpoint
– Servers don't run FUSE => best with multiple clients/server

● NFS+SMB servers use libgfapi, no FUSE overhead

Networking – Putting it all together

Features coming soon
To a Gluster volume near you

(i.e. glusterfs-3.7 and later)

Lookup-unhashed fix

Bitrot detection – in glusterfs-3.7 = RHS 3.1

● Provides greater durability for Gluster data (JBOD)
● Protects against silent loss of data
● Requires signature on replica recording original checksum
● Requires periodic scan to verify data still matches checksum
● Need more data on cost of the scan
● TBS – DIAGRAMS, ANY DATA?

A tale of two mountpoints - sequential write performance
And the result... drum roll....

Balancing storage and networking performance

● Based on workload
– Transactional or small-file workloads

● don't need > 10 Gbps
● Need lots of IOPS (e.g. SSD)

– Large-file sequential workloads (e.g. video capture)
● Don't need so many IOPS
● Need network bandwidth

– When in doubt, add more networking, cost < storage

Cache tiering

● Goal: performance of SSD with cost/TB of spinning rust
● Savings from Erasure Coding can pay for SSD!
● Definition: Gluster tiered volume consists of two subvolumes:
● - “hot” tier: sub-volume low capacity, high performance
● - “cold” tier: sub-volume – high capacity, low performance
● -- promotion policy: migrates data from cold tier to hot tier
● -- demotion policy: migrates data from hot tier to cold tier
● - new files are written to hot tier initially unless hot tier is full

perf enhancements
unless otherwise stated,

UNDER CONSIDERATION, NOT IMPLEMENTED
● Lookup-unhashed=auto in Glusterfs 3.7 today, in RHGS 3.1 soon

–Eliminates LOOKUP per brick during file creation, etc.
● JBOD support – Glusterfs 4.0 – DHT V2 intended to eliminate spread of
directories across all bricks

● Sharding – spread file across more bricks (like Ceph, HDFS)
● Erasure Coding – Intel instruction support, symmetric encoding, bigger chunk
size

● Parallel utilities – examples are parallel-untar.py and parallel-rm-rf.py
● Better client-side caching – cache invalidation starting in glusterfs-3.7
● YOU CAN HELP DECIDE! Express interest and opinion on this

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

