
USING APACHE SPARK FORUSING APACHE SPARK FOR
ANALYTICS IN THE CLOUDANALYTICS IN THE CLOUD

William C. BentonWilliam C. Benton

Principal Software Engineer

Red Hat Emerging Technology

June 24, 2015

ABOUT MEABOUT ME
Distributed systems and data science in Red Hat's
Emerging Technology group
Active open-source and Fedora developer
Before Red Hat: programming language research

FORECASTFORECAST
Distributed data processing: history and mythology
Data processing in the cloud
Introducing Apache Spark
How we use Spark for data science at Red Hat

Recent history & persistent mythology

DATA PROCESSINGDATA PROCESSING

What makes distributed data processing difficult?

CHALLENGESCHALLENGES

MAPREDUCE (2004)MAPREDUCE (2004)
A novel application of some very old functional
programming ideas to distributed computing
All data are modeled as key-value pairs
 Mappers transform pairs; reducers merge several
pairs with the same key into one new pair
Runtime system shuffles data to improve locality

WORD COUNTWORD COUNT
"a b" "c e" "a b" "d a" "d b"

MAPPED INPUTSMAPPED INPUTS
(a, 1)
(b, 1)

(c, 1)
(e, 1)

(a, 1)
(b, 1)

(d, 1)
(a, 1)

(d, 1)
(b, 1)

SHUFFLED RECORDSSHUFFLED RECORDS
(a, 1)
(a, 1)
(a, 1)

(b, 1)
(b, 1)
(b, 1)

(c, 1) (d, 1)
(d, 1)

(e, 1)

REDUCED RECORDSREDUCED RECORDS

(a, 3) (b, 3) (c, 1) (d, 2) (e, 1)

HADOOP (2005)HADOOP (2005)
Open-source implementation of MapReduce, a
distributed filesystem, and more
Inexpensive way to store and process data with
scale-out on commodity hardware
Motivates many of the default assumptions we
make about “big data” today

“FACTS”“FACTS”
You need an architecture that will scale out to many
nodes to handle real-world data analytics
Your network and disks probably aren't fast enough
Locality is everything: you need to be able to run
compute jobs on the nodes storing your data

“FACTS”“FACTS”
You need an architecture that will scale out to many
nodes to handle real-world data analytics
Your network and disks probably aren't fast enough
Locality is everything: you need to be able to run
compute jobs on the nodes storing your data

...at least two analytics production clusters (at
Microsoft and Yahoo) have median job input sizes
under 14 GB and 90% of jobs on a Facebook
cluster have input sizes under 100 GB.

Appuswamy et al., “Nobody ever got fired for
buying a cluster.” Microsoft Research Tech Report.

Takeaway #1: you may need petascale
storage, but you probably don't even
need terascale compute.

Takeaway #2: moderately sized
workloads benefit more from
scale-up than scale out.

“FACTS”“FACTS”
You need an architecture that will scale out to many
nodes to handle real-world data analytics
Your network and disks probably aren't fast enough
Locality is everything: you need to be able to run
compute jobs on the nodes storing your data

Contrary to our expectations ... CPU (and not I/O)
is often the bottleneck [and] improving network
performance can improve job completion time by
a median of at most 2%

Ousterhout et al., “Making Sense of Performance in
Data Analytics Frameworks.” USENIX NSDI ’15.

Takeaway #3: I/O is not the bottleneck
(especially in moderately-sized jobs);
focus on CPU performance.

“FACTS”“FACTS”
You need an architecture that will scale out to many
nodes to handle real-world data analytics
Your network and disks probably aren't fast enough
Locality is everything: you need to be able to run
compute jobs on the nodes storing your data

Takeaway #4: collocated data and
compute was a sensible choice for
petascale jobs in 2005, but shouldn't
necessarily be the default today.

FACTS (REVISED)FACTS (REVISED)
You probably don't need an architecture that will
scale out to many nodes to handle real-world data
analytics (and might be better served by scaling up)
Your network and disks probably aren't the problem
You have enormous flexibility to choose the best
technologies for storage and compute

HADOOP IN 2015HADOOP IN 2015
MapReduce is low-level, verbose, and not an obvious
fit for many interesting problems
No unified abstractions: Hive or Pig for query,
Giraph for graph, Mahout for machine learning, etc.
Fundamental architectural assumptions need to be
revisited along with the “facts” motivating them

How our assumptions should change

DATA PROCESSINGDATA PROCESSING
IN THE CLOUDIN THE CLOUD

COLLOCATED DATACOLLOCATED DATA
AND COMPUTEAND COMPUTE

ELASTIC RESOURCESELASTIC RESOURCES

DISTINCT STORAGEDISTINCT STORAGE
AND COMPUTEAND COMPUTE
Combine the best storage system for your application
with elastic compute resources.

INTRODUCING SPARKINTRODUCING SPARK

Apache Spark is a framework for
distributed computing based on a
high-level, expressive abstraction.

Query ML Graph Streaming
Spark core

ad hoc Mesos YARNQuery ML Graph Streaming
Spark core

ad hoc Mesos YARN
Spark core

Query ML Graph Streaming

Language bindings for Scala,
Java, Python, and R

Access data from JDBC,
Gluster, HDFS, S3, and more

ad hoc Mesos YARN
A resilient distributed dataset is a
partitioned, immutable, lazy collection.

A resilient distributed dataset is a
partitioned, immutable, lazy collection.

A resilient distributed dataset is a
partitioned, immutable, lazy collection.

The PARTITIONS making up
an RDD can be distributed
across multiple machines

A resilient distributed dataset is a
partitioned, immutable, lazy collection.

TRANSFORMATIONS create new
(lazy) collections; ACTIONS force
computations and return results

CREATING AN RDDCREATING AN RDD

spark.parallelize(range(1, 1000))

spark.textFile("hamlet.txt")

spark.hadoopFile("...")
spark.sequenceFile("...")
spark.objectFile("...")

from an in-memory collection

from the lines of a text file

from a Hadoop-format binary file

TRANSFORMING RDDSTRANSFORMING RDDS

numbers.map(lambda x: x + 1)

lines.flatMap(lambda s: s.split(" "))

vowels = ['a', 'e', 'i', 'o', 'u']
words.filter(lambda s: s[0] in vowels)

words.distinct()

transform each element independently

turn each element into zero or more elements

reject elements that don't satisfy a predicate

keep only one copy of duplicate elements

TRANSFORMING RDDSTRANSFORMING RDDS

pairs.sortByKey()

pairs.reduceByKey(lambda x, y: max(x, y))

pairs.join(other_pairs)

return an RDD of key-value pairs, sorted by
the keys of each

combine every two pairs having the same key,
using the given reduce function

join together two RDDs of pairs so that
[(a, b)] join [(a, c)] == [(a, (b, c))]

CACHING RESULTSCACHING RESULTS

sorted_pairs = pairs.sortByKey()
sorted_pairs.cache()

sorted_pairs.persist(MEMORY_AND_DISK)

sorted_pairs.unpersist()

tell Spark to cache this RDD in cluster
memory after we compute it

as above, except also store a copy on disk

uncache and free this result

COMPUTING RESULTSCOMPUTING RESULTS

numbers.count()

counts.collect()

words.saveAsTextFile("...")

compute this RDD and return a
count of elements

compute this RDD and materialize it
as a local collection

compute this RDD and write each
partition to stable storage

WORD COUNT EXAMPLEWORD COUNT EXAMPLE

f = spark.textFile("...")

words = f.flatMap(lambda line: line.split(" "))

occs = words.map(lambda word: (word, 1))

counts = occs.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("...")

create an RDD backed by the lines of a file

...mapping from lines of text to words

...mapping from words to occurrences

...reducing occurrences to counts

POP QUIZ: what have we computed so far?

PETASCALE STORAGE,PETASCALE STORAGE,
IN-MEMORY COMPUTEIN-MEMORY COMPUTE

storage/compute nodes

compute-only nodes, which
primarily operate on
cached post-ETL data

DATA SCIENCE ATDATA SCIENCE AT
RED HATRED HAT

THE EMERGING TECHTHE EMERGING TECH
DATA SCIENCE TEAMDATA SCIENCE TEAM
Engineers with distributed systems, data science,
and scientific computing expertise
Goal: help internal customers solve data problems
and make data-driven decisions
Principles: identify best practices, question outdated
assumptions, use best-of-breed technology

DEVELOPMENTDEVELOPMENT

Six compute-only nodes
Two nodes for Gluster
storage
Apache Spark running
under Apache Mesos
Open-source “notebook”
interfaces to analyses

DATA SOURCESDATA SOURCES

FTP

S3

SQL

MongoDB

ElasticSearch

INTERACTIVE QUERYINTERACTIVE QUERY

TWO CASE STUDIESTWO CASE STUDIES

ROLE ANALYSISROLE ANALYSIS
Data source: historical configuration and telemetry
data for internal machines from ElasticSearch
Data size: hundreds of GB
Analysis: identify machine roles based on the
packages each has installed

BUDGET FORECASTINGBUDGET FORECASTING
Data sources: operational log data for OpenShift Online
(from MariaDB), actual costs incurred by OpenShift
Data size: over 120 GB
Analysis: identify operational metrics most strongly
correlated with operating expenses; model daily
operating expense as a function of these metrics

Aggregating performance metrics:
17 hours in MariaDB, 15 minutes in Spark!

NEXT STEPSNEXT STEPS

DEMO VIDEODEMO VIDEO
See a video demo of Continuum Analytics, PySpark,
and Red Hat Storage: or h.264 Ogg Theora

http://freevariable.com/screencasts/demo.m4v
http://freevariable.com/screencasts/demo.ogv

WHERE FROM HEREWHERE FROM HERE
Check out the Emerging Technology Data Science
team's library to help build your own data-driven
applications:
See my blog for articles about open source data
science:
Questions?

https://github.com/willb/silex/

http://chapeau.freevariable.com

https://github.com/willb/silex
http://chapeau.freevariable.com/

THANKSTHANKS

