

BOSTON, MA JUNE 23-26, 2015

BUILDING OPENSHIFT AND OPENSTACK PLATFORMS WITH RED HAT

Pilar Bravo, Senior Solution Architect, Red Hat David Manchado, Infrastructure Architect, Produban Alfredo Moralejo, Senior Domain Architect, Red Hat Cristian Roldán, Middleware Architect, Produban

#redhat #rhsummit

#redhat #rhsummit

WHO WE ARE

WHO IS WHO

PILAR BRAVO

Senior Solution Architect JBoss Middleware

ALFREDO MORALEJO

Senior Cloud Domain Architect

#redhat #rhsummit

CRISTIAN ROLDAN

Middleware Architect

DAVID MANCHADO

Infrastructure Architect

PRODUBAN

A Global Company in 9 countries giving services to 120 Santander Group affiliates

SERVICES PROVIDED...

117 million Retail Banking Customers 11.6 million Online Banking Customers ♥30 million of credit cards ♥80 million of debit cards •30 million Contact Centre calls a month 1,258 million of weekly transactions ▶67 million of card transaction during peak days 2.4 million weekly batch executions ▶ 16.7 million of daily payments

ON TOP OF...

10 Corporate Datacenters **15** Mainframes + 28,000 physical servers + 64,000 logical servers + 22,000 data bases + 28,000 web app servers + 12,900 branches + 253,000 desktops + 6 PB/M data btw DC

GLOBAL CLOUD PROJECT

- Aims to provide a full XaaS stack
 - Already existing services

- Enable digital transformation (Banking 3.0)
- DevOps
- Mobile Apps

THE WHOLE PICTURE

BUILDING AN OPENSTACK PLATFORM

#redhat #rhsummit

•

•

. . .

DESIGN PRINCIPLES

Greenfield approach General-purpose Cloud Software Defined Everything Multilocation Scale-out Failure domain contention Vendor lock-in avoidance Open Standards OpenSource First (...but not only!)

DECISSION MAKING PROCESS: OPENSTACK

WHY OPENSTACK

- Openness
- Community
- Interoperability
- Upgrade-in-place (starting from Icehouse)
- Technology meeting point (de-facto standard)

WHY RED HAT

- Close relationship since 2010
- Major player in OpenStack
- Professional Service offering
- Support

DECISSION MAKING PROCESS: SERVERS

Openstack Services

VMware

Traditional Standalone Server

Local disk

Compute Nodes
KVM
OpenCompute
Local disk (Ceph)

- Efficiency
- Data Center strategy
- Open

http://www.opencompute.org

DECISSION MAKING PROCESS: STORAGE

- Software Defined Storage
- Multiple storage needs (image, block & object)
- Scale-out
- **Openstack alignment**
- Maximum usage of available resources

	Ope
	Flexi
	Pay
ceph	Supp
CCPII	an

enSource reference solution for OpenStack

- ibility
- as you grow
- ported by Red Hat
- nd it works!

DECISSION MAKING PROCESS: NETWORKING

- Software Defined Network
- Non-propietary fabric
- Based on standard routing protocols (OSPF)
- Leaf & Spine topology
- Scalability
- Openstack alignment
- Avoid L2 adjacency

Federation Capabilities Distributed routing

MULTILOCATION DEPLOYMENT

- Located on Corporate DataCenters
- Traditional failure domain approach
 1. Region
 - 2. Availability Zone (AZ)
- Provide building blocks to define resilient architectures on top

HIGH LEVEL DESIGN

CURRENTLY

Smallest region:

MID TERM

14,000 CORES

200TB RAM

SIZING

Think big, start small → plan to grow to ~ 1000 nodes

CLOUD VERSIONING

vO

Private Cloud Instances

- RHEL Images (Ceph Volumes)
- RHEL Images (Local Disk –Bigdata)

Block Storage

- Local Disk
- Ceph volumes

Software Defined Network

- Private networks
- External GSNet network (floating IP, shared Subnet)
- Service Channing
- Network Templates

RHEL 7.0 Openstack Icehouse

Nuage R3.03

CEPH 1.2.2

v0.1

Private Cloud Instances

- RHEL Images (Ceph Volumes)
- RHEL Images (Local Disk –Bigdata)

Block Storage

- Local Disk
- Ceph volumes

Software Defined Network

- Private networks
- External GSNet network (floating IP, shared Subnet)
- Service Channing
- Network Templates
- L3 Federation ⁽¹⁾

RHEL 7.0 Openstack Icehouse

Nuage R3.06

CEPH 1.2.2

v1.0 Beta

Private Cloud Instances

- RHEL Images (Ceph Volumes)
- RHEL Images (Local Disk –Bigdata)

Block Storage

- Local Disk
- Ceph volumes

Software Defined Network

- Private networks
- External GSNet network (floating IP, shared Subnet)
- Service Channing
- Network Templates
- L3 Federation ⁽¹⁾

RHEL 7.1

Openstack Juno

Nuage R3.06

CEPH 1.2.3

v1.0

Private Cloud Instances

- RHEL Images (Ceph Volumes)
- RHEL Images (Local Disk –Bigdata)
- WIN Images (X.Small to X.Large)

Block & Object Storage

- Local Disk
- Ceph volumes
- Object Storage

Software Defined Network

- Private networks
- External GSNet network (floating IP, shared Subnet)
- Service Channing
- Network Templates
- L3 Federation
- External Internet Network

RHEL 7.1

Openstack Juno

Nuage R3.07

CEPH 1.2.3

- Think big, start small
- Maximize resource usage
- Non-cloud native workloads \rightarrow Big Data
- Availability Zones isolation
- Live Architecture
- Heterogeneous components integration and lifecycle (HW, Openstack, SDS, SDN...)
- Non-openstack ecosystem integration (monitoring, billing, identity provider...)

TECHNICAL CHALLENGES

DEPLOYMENT ARCHITECTURE

#redhat #rhsummit

- Distribute control plane in following roles:
- Load Balancers: haproxy
- Backend: MariaDB, MongoDB, RabbitMQ
- Controllers: OpenStack services
- Pacemaker as cluster manager
- Galera for MariaDB replication
- RabbitMQ with mirrored queues
- Additional per-AZ cluster with cinder

RESOURCE DISTRIBUTION

- Goal: maximize hardware resources usage
- Hyperconvergent mode not recommended by Red Hat.
- Approach: stability over performance
- Limit resources usage (specially memory) for ceph (OSDs) and nova (VMs): cgroups to limit memory used by OSDs (~40GB)
- - Reserved_host_memory_mb to reduce the memory for nova scheduler (~50GB) Use cinder QoS to limit per-volume resources
 - Distribution of available network bandwith for different workflows (QoS)

CEPH DESIGN

JBOD 14 x SATA/SSD

#redhat #rhsummit

3 Copies using a rule placing all copies in different racks and zones inside a given AZ/Region

THE DATA ANALYTICS CHALLENGE

- Critical use case: big data with hadoop and HDFS -Designed and conceived for bare metal with local disks
- Created several big flavors for analytics
- Main challenge: I/O access for HDFS

THE DATA ANALYTICS CHALLENGE (II)

- Defined non-converged nodes with local disks in a Host Aggregate
- Assigned extra_specs to analytics flavors to schedule in non-converged nodes
- At boot time, a libvirt hook attach virtual RAW disks on top of local disks to Vms
- Able to achieve required performance

OPENSTACK SEGREGATION

* Pending of fix for bz 1189887

OPENSTACK SEGREGATION (II)

- Independent CEPH cluster for each AZ for full isolation
- External replication script to clone images between ceph clusters
- Using glance multi-location to register all copies for each image
- Pending on patch in cinder to support CoW with multi-locations
- Next versions of cinder will allow glance to manage multiple RBD stores

NEXT STEPS

New OpenStack projects/features

-Designate -Trove -Sahara -Manila -Ironic -LBaaS

Upgrading the whole installed base ¿twice a year/continuous? Deploy pending regions / grow in the current ones

Object Storage (Swift-based)

Keystone integration with Identity Provider (SAML)

Cinder & QoS

Evolve architecture and fine tuning

BUILDING AN OPENSHIFT PLATFORM

••••

#redhat #rhsummit

THE ENVIRONMENT

- Produban provides services to ISBAN
- ISBAN
 - -Very focused on Websphere (own framework Banksphere)
 - Started migration of Banksphere to JBoss
 - Interest in:
 - JEE platform
 - Microservices approach
 - Self service for developers
 - ¿PaaS? ... sure!

THE WAY OF PAIN

PRODUBAN VS OPENSHIFT

Produban wanted to:

- -Know what they were doing
- Understand the platform
- -Be able to adapt the platform to their needs

Red Hat needed

- Defined requisites
- -Set expectations and goals
- -"Enable" Produban (as a partner)

INITIAL INSTALLATION

- First install was completely manual
- Installation guide became our "Book of knowledge"
- 3 people, 1 keyboard
 - -(1 week of less than 2 hours keyboard time for consultant)
 - -Required a lot of patience ... for all of us

INITIAL INSTALLATION OUTCOME

- Produban felt very comfortable with the product
- We needed a Solution, not a Product
 - -Requisites were defined
 - -Architecture was needed
 - -Project roadmap needed
 - -Platform not available

REQUISITES

- 45 infrastructure requisites defined
- 4 priority levels (from "Mandatory" to "Good to Have")
 - -Infrastructure
 - Operational
 - Upgrades were a very important topic
 - -Backup
 - -Monitoring

ARCHITECTURE DESIGN

REQUISITES: GEARS

- Zones and Regions appeared with the perfect timing
- Gear sizes were used as Gear profiles permitting:
 - -Allocate gears in DEV / PRE / PRO environments
 - -Allocate gears in Europe or America region
 - -Enable apps in Internet or Intranet
 - -... and of course, assign gear size

ARCHITECTURE: REGIONS, ZONES, DISTRICTS

SOFTWARE CONFIG AND MANAGEMENT (I)

- Necessary
- Satellite 5 available (Satellite 6 in beta)
 - -Used the corporate build to be in line with policies
 - -Cloned Software Channels to keep a stable baseline
 - -Created Config Channels for each role (Broker, Node, DB+Queue)
 - Created Activation Keys for each role
 - Associated Software Channels
 - Associated Config Channels
 - -Support scripts for intermediate tasks

SOFTWARE CONFIG AND MANAGEMENT (II)

- Config channels kept versioned backup of configuration
 - -Great to debug issues
 - -Macros helpful for machine specific config
 - -Customer loved "rhncfg-manager"
- New Nodes / Brokers / DB+Queue easily deployed
- No request for automatic deployment
 - -Puppet considered for "phase 2" with Satellite 6

- CA Wily Introscope
 - -Created a cartridge to monitor apps:
 - JBoss
 - Tomcat
- Customer wanted to deploy plain Java apps
 - Created initially for Spring Boot applications.
 - Cartridge won the "Winter of Code"

https://github.com/Produban/ose_cartridge_javase

CUSTOM CARTRIDGES

- OpenShift's Infrastructure
 - Centralized logging in place
 - -Rsyslog for everything
 - -Suggested ELK but not accepted (user permissions)
- Applications.
 - -OSE's logshifter was tested, but found some performance issues.
 - Appender for Kafka is used.

LOGGING

MONITORING

- Centralized monitoring in place
 - -Two levels of monitoring
 - OpenShift's Infrastructure
 - Applications
 - -CA Wily Introscope
 - -OpenShift Online scripts were used and improved

https://github.com/Produban/OpenShift20_Monitoring

OPENSHIFT INFRASTRUCTURE MONITORING

OPENSHIFT OVERVIEW ON OPENNEBULA

OPENSHIFT'S NODE MONITORING

OSE's metrics are generated by the command oo-stats --format yaml

OPENSHIFT'S GEARS MONITORING

OSE's metrics are generated by the command oo-stats --format yaml

OPENSHIFT'S BSN NODES MONITORING

OPENSHIFT CUSTOM LOADBALANCER MONITORING

OSS Project https://github.com/Produban/openshift-origin-app-load-balancer

#redhat #rhsummit

CUSTOM LOAD BALANCER

- External load balancer not available
 - -Let's make one!
 - -Keepalived for floating IP
 - -Nginx for redirection
 - -Custom listener to manage queues
 - Mcollective for actions

https://github.com/Produban/openshift-origin-app-load-balancer

The custom Load Balancer

is not used in Azure,

multicast is not supported.

CONCLUSION (I)

- Produban is happy with OpenShift Enterprise 2.x
 - -OSE is very flexible and open.
 - We love package oriented solutions instead of black box
 - Easy to deploy in any laaS.
 - -We love cartridge specification.... much flexible than other PaaS solutions
 - Is not easy to achieve a stable OSE infrastructure .
 - -Infrastructure custom monitoring solution is a MUST.
 - -Intuitive and useful OpenShift's eclipse plugins.
 - -ssh to GEAR is one of the most useful feature.

CONCLUSION (II)

- We have learned a lot of new things ...
 - -Monolithic applications don't fit well in a PaaS environment.
 - -PaaS is the perfect environment for Microservices applications.
 - -The twelve-factor app, is the core pattern for PaaS applications http://12factor.net/build-release-run
 - -PaaS administration team, why DevOps skill is a must ?
 - Installation, configuration and integration with external components is complex ...
 Monitoring, late of Publy, laws, bach scripts
 - Monitoring, lots of Ruby, Java, bash scripts ...
 - From development perspective PaaS is always the culprit ...
 - CI/CD/Maven/Git/Cartridge is a complex ecosystem for troubleshooting ...

Paas Approach

PRODUBAN PAAS STRATEGY

OPENSHIFT 3 BETA

- We are involved in OpenShift 3 beta
 - -Already tested OpenShift Origin Alpha.
 - Docker ecosystem is great!.
 - -We have started with Drop 3.
 - -Several teams were testing OpenShift V3 beta.
 - -We have opened lots of issues in GitHub.

Service Marketplace: We feel very comfortable with Cloud Foundry Marketplace architecture, we would like to see something similar in OpenShift why not reuse the CF's Service Broker API ?

http://docs.cloudfoundry.org/services/api.html

PILAR

ALFREDO

#redhat #rhsummit

THE TEAM

CRISTIAN

DAVID

THE TEAM

JEL ANGEL		DANI			
XAVI		CRISTIA	N	ENRIQUE	
JEL	ANDREA		CAF	RLOS	PEDRO
JONAS	S	JUAN			MARIO
ΓΙΑΝ	JOSE	RAUL		DAVID	OSCAR
DANI	NII		CARLC	JC	DRGE JAVI
	OBERTO	URIA			ANTONIO

LEARN. NETWORK. **EXPERIENCE OPEN SOURCE.**

#redhat #rhsummit

RED HAT SUMMIT

. . .

