

BUILDING OPENSHIFT AND OPENSTACK
PLATFORMS WITH RED HAT

Pilar Bravo, Senior Solution Architect, Red Hat
David Manchado, Infrastructure Architect, Produban
Alfredo Moralejo, Senior Domain Architect, Red Hat
Cristian Roldán, Middleware Architect, Produban

WHO WE ARE

WHO IS WHO

PILAR BRAVO

Senior Solution Architect
JBoss Middleware

ALFREDO MORALEJO

Senior Cloud Domain Architect

DAVID MANCHADO

Infrastructure Architect

CRISTIAN ROLDAN

Middleware Architect

PRODUBAN

+ 5.000 professionals+ 5.000 professionals

A Global Company in 9 countries giving services to 120 Santander Group affiliates

SERVICES PROVIDED... ON TOP OF...

117 million Retail Banking Customers
11.6 million Online Banking Customers
30 million of credit cards
80 million of debit cards
30 million Contact Centre calls a month
1,258 million of weekly transactions
67 million of card transaction during peak days
2.4 million weekly batch executions
16.7 million of daily payments

10 Corporate Datacenters
15 Mainframes
+ 28,000 physical servers
+ 64,000 logical servers
+ 22,000 data bases
+ 28,000 web app servers
+ 12,900 branches
+ 253,000 desktops
+ 6 PB/M data btw DC

GLOBAL CLOUD PROJECT

● Aims to provide a full XaaS stack
– Already existing services
– IaaS
– PaaS

● Enable digital transformation (Banking 3.0)

● DevOps

● Mobile Apps

THE WHOLE PICTURE

BUILDING AN OPENSTACK PLATFORM

DESIGN PRINCIPLES

Greenfield approach
General-purpose Cloud
Software Defined Everything
Multilocation
Scale-out
Failure domain contention
Vendor lock-in avoidance
Open Standards
OpenSource First (...but not only!)

DECISSION MAKING PROCESS: OPENSTACK

WHY OPENSTACK
– Openness
– Community
– Interoperability
– Upgrade-in-place (starting from Icehouse)
– Technology meeting point (de-facto

standard)
WHY RED HAT
– Close relationship since 2010
– Major player in OpenStack
– Professional Service offering
– Support

DECISSION MAKING PROCESS: SERVERS

Openstack Services Compute Nodes
VMware KVM

Traditional Standalone Server OpenCompute
Local disk Local disk (Ceph)

– Efficiency
– Data Center strategy
– Open

http://www.opencompute.org

DECISSION MAKING PROCESS: STORAGE

Software Defined Storage
Multiple storage needs (image, block & object)
Scale-out
Openstack alignment
Maximum usage of available resources

OpenSource reference solution for OpenStack

Flexibility

Pay as you grow

Supported by Red Hat

...and it works!

DECISSION MAKING PROCESS: NETWORKING

Software Defined Network

Non-propietary fabric

Based on standard routing protocols (OSPF)

Leaf & Spine topology

Scalability

Openstack alignment

Avoid L2 adjacency
Federation Capabilities

Distributed routing

Maturity

Support

MULTILOCATION DEPLOYMENT

 Located on Corporate DataCenters

 Traditional failure domain approach
1. Region
2. Availability Zone (AZ)

 Provide building blocks to define resilient
architectures on top

Region

AZ AZ AZ

Region Region

AZ AZ AZ AZ AZ AZ

AZ AZ AZ

Region

HIGH LEVEL DESIGN

Hardware

SWIFT
Object Store

CINDER
Block Store

Hypervisor

CEILOMETER
Metering

KEYSTONE
ID Management

GLANCE
Images

Horizon (Dashboard)

NOVA
Compute

HEAT
Orchestration

SATELLITE 6
(orchestration,

automation and
patch management)

Red Hat Enterprise Linux
OpenStack Platform

NEUTRON
Networks

CEPH

Public Cloud
Red Hat CloudForms

SIZING
CURRENTLY
Biggest region: 88 compute nodes / 44 ceph OSD nodes (440 x 4TB OSDs)
Smallest region: 8 compute nodes / 8 ceph OSD nodes (80 x 4TB OSDs)
Total deployed: 160 compute nodes / 12 ceph OSD nodes (120 x 4TB OSDs)

 MID TERM

Think big, start small → plan to grow to ~ 1000 nodes

14,000
CORES

200TB
RAM

600TB
OSD JOURNAL

16PB
OSD CAPACITY

CLOUD VERSIONING

v0 v0.1 v1.0 Beta v1.0

TECHNICAL CHALLENGES

● Think big, start small

● Maximize resource usage

● Non-cloud native workloads Big Data→

● Availability Zones isolation

● Live Architecture

● Heterogeneous components integration and lifecycle (HW, Openstack, SDS, SDN…)

● Non-openstack ecosystem integration (monitoring, billing, identity provider...)

DEPLOYMENT ARCHITECTURE

● Distribute control plane in following roles:
✔ Load Balancers: haproxy
✔ Backend: MariaDB, MongoDB, RabbitMQ
✔ Controllers: OpenStack services

● Pacemaker as cluster manager
● Galera for MariaDB replication
● RabbitMQ with mirrored queues

● Additional per-AZ cluster with cinder

RESOURCE DISTRIBUTION

● Goal: maximize hardware resources usage
● Hyperconvergent mode not recommended by Red Hat.
● Approach: stability over performance
● Limit resources usage (specially memory) for ceph (OSDs) and nova (VMs):

– cgroups to limit memory used by OSDs (~40GB)
– Reserved_host_memory_mb to reduce the memory for nova scheduler (~50GB)
– Use cinder QoS to limit per-volume resources
– Distribution of available network bandwith for different workflows (QoS)

800G SSD

JBOD 14 x SATA/SSD

AZ2 AZ3AZ1

ZONEZONE ZONE

REGION

CEPH DESIGN

3 Copies using a rule placing all copies in different racks and zones inside a given AZ/Region

RACKRACK RACK

SUBZONESUBZONE SUBZONE

STORAGE
SERVER

STORAGE
SERVER

STORAGE
SERVER

RACKRACK

321
OSD

SATA 4TB

SATA 4TB

SATA 4TB

SATA 4TB

SSD 1,6TB

SATA 4TB

SATA 4TB

SATA 4TB

SATA 4TB

SATA 4TB

SATA 4TB

SSD 1,6TB

SSD 1,6TB

SATA 4TB

OSD

OSD

OSD

OSD

OSD

OSD

OSD

OSD

Cache pool
/ pool

RAID 5
ephemeral

150G Journal
150G Journal
150G Journal
150G Journal

60G OS
RAID1

800G SSD

150G Journal
150G Journal
150G Journal
150G Journal

60G OS
RAID1

THE DATA ANALYTICS CHALLENGE

● Critical use case: big data with hadoop and HDFS
– Designed and conceived for bare metal with local disks

● Created several big flavors for analytics
● Main challenge: I/O access for HDFS

Ironic PCI- Passthrough Cinder Ceph driver

Swift Ephemeral

THE DATA ANALYTICS CHALLENGE (II)

● Defined non-converged nodes with local disks in a Host Aggregate
● Assigned extra_specs to analytics flavors to schedule in non-converged nodes
● At boot time, a libvirt hook attach virtual RAW disks on top of local disks to Vms
● Able to achieve required performance

Compute node

VM1 VM2

Physical drives

Virtual RAW disks

Connected at
boot by

libvirt hook

OPENSTACK SEGREGATION

OPENSTACK SEGREGATION (II)

Ceph Cluster Region
REGION-AZ3

Ceph Cluster Region
REGION-AZ2

Ceph Cluster Region
REGION-AZ1

OSDs AZ1 OSDs AZ2 OSDs AZ3

Mon1 Mon2

Pool volumes-AZ1

Pool backup-AZ1

Pool volumes-AZ2

Pool backup-AZ2

Pool volumes-AZ3

Pool backup-AZ3

Pool glance-AZ1 Pool glance-AZ2 Pool glance-AZ3

Cinder volume AZ-1

Cinder backup AZ-1

Glance

Mon3

Mon4 Mon5

Mon1 Mon2 Mon3

Mon4 Mon5

Mon1 Mon2 Mon3

Mon4 Mon5

Cinder volume AZ-2

Cinder backup AZ-2

Glance

Cinder volume AZ-2

Cinder backup AZ-2

Glance

Instances
Multi-location

replicator

● Independent CEPH cluster for each AZ
for full isolation

● External replication script to clone
images between ceph clusters

● Using glance multi-location to register
all copies for each image

● Pending on patch in cinder to support
CoW with multi-locations

● Next versions of cinder will allow
glance to manage multiple RBD stores

NEXT STEPS

New OpenStack projects/features
–Trove
–Sahara
–Ironic

Upgrading the whole installed base ¿twice a year/continuous?
Deploy pending regions / grow in the current ones
Object Storage (Swift-based)
Keystone integration with Identity Provider (SAML)
Cinder & QoS
Evolve architecture and fine tuning

–Designate
–Manila
–LBaaS

BUILDING AN OPENSHIFT PLATFORM

THE ENVIRONMENT

● Produban provides services to ISBAN
● ISBAN

– Very focused on Websphere (own framework Banksphere)
– Started migration of Banksphere to JBoss
– Interest in:

● JEE platform
● Microservices approach
● Self service for developers
● ¿PaaS? ... sure!

THE WAY OF PAIN

PRODUBAN VS OPENSHIFT

Produban wanted to:
– Know what they were doing
– Understand the platform
– Be able to adapt the platform to their needs

Red Hat needed
– Defined requisites
– Set expectations and goals
– “Enable” Produban (as a partner)

INITIAL INSTALLATION

● First install was completely manual
● Installation guide became our “Book of

knowledge”
● 3 people, 1 keyboard

– (1 week of less than 2 hours keyboard time
for consultant)

– Required a lot of patience ... for all of us

INITIAL INSTALLATION OUTCOME

● Produban felt very comfortable with the product
● We needed a Solution, not a Product

– Requisites were defined
– Architecture was needed
– Project roadmap needed
– Platform not available

REQUISITES

● 45 infrastructure requisites defined
● 4 priority levels (from “Mandatory” to “Good to Have”)

– Infrastructure
– Operational

● Upgrades were a very important topic
– Backup
– Monitoring

ARCHITECTURE DESIGN

REQUISITES: GEARS

● Zones and Regions appeared with the perfect timing
● Gear sizes were used as Gear profiles permitting:

– Allocate gears in DEV / PRE / PRO environments
– Allocate gears in Europe or America region
– Enable apps in Internet or Intranet
– ... and of course, assign gear size

ARCHITECTURE: REGIONS, ZONES, DISTRICTS

SOFTWARE CONFIG AND MANAGEMENT (I)

● Necessary
● Satellite 5 available (Satellite 6 in beta)

– Used the corporate build to be in line with policies
– Cloned Software Channels to keep a stable baseline
– Created Config Channels for each role (Broker, Node, DB+Queue)
– Created Activation Keys for each role

● Associated Software Channels
● Associated Config Channels

– Support scripts for intermediate tasks

SOFTWARE CONFIG AND MANAGEMENT (II)

● Config channels kept versioned backup of configuration
– Great to debug issues
– Macros helpful for machine specific config
– Customer loved “rhncfg-manager”

● New Nodes / Brokers / DB+Queue easily deployed
● No request for automatic deployment

– Puppet considered for “phase 2” with Satellite 6

CUSTOM CARTRIDGES

● CA Wily Introscope
– Created a cartridge to monitor apps:

● JBoss
● Tomcat

● Customer wanted to deploy plain Java apps
– Created initially for Spring Boot applications.

● Cartridge won the “Winter of Code”

https://github.com/Produban/ose_cartridge_javase

https://github.com/Produban/ose_cartridge_javase

LOGGING

● OpenShift's Infrastructure
– Centralized logging in place
– Rsyslog for everything
– Suggested ELK but not accepted (user permissions)

● Applications.
– OSE's logshifter was tested, but found some performance issues.
– Appender for Kafka is used.

MONITORING

● Centralized monitoring in place
– Two levels of monitoring

● OpenShift's Infrastructure
● Applications

– CA Wily Introscope
– OpenShift Online scripts were used and improved

https://github.com/Produban/OpenShift20_Monitoring

https://github.com/Produban/OpenShift20_Monitoring

OPENSHIFT INFRASTRUCTURE MONITORING

OPENSHIFT OVERVIEW ON OPENNEBULA

OPENSHIFT'S NODE MONITORING

OSE's metrics are generated by the command oo-stats --format yaml

OPENSHIFT'S GEARS MONITORING

OSE's metrics are generated by the command oo-stats --format yaml

OPENSHIFT'S BSN NODES MONITORING

OPENSHIFT CUSTOM LOADBALANCER MONITORING

OSS Project https://github.com/Produban/openshift-origin-app-load-balancer

CUSTOM LOAD BALANCER
● External load balancer not available

– Let's make one!
– Keepalived for floating IP
– Nginx for redirection
– Custom listener to manage queues
– Mcollective for actions

https://github.com/Produban/openshift-origin-app-load-balancer

The custom Load Balancer
is not used in Azure,
multicast is not supported.

https://github.com/Produban/openshift-origin-app-load-balancer

● Produban is happy with OpenShift Enterprise 2.x
– OSE is very flexible and open.

● We love package oriented solutions instead of black box
● Easy to deploy in any IaaS.

– We love cartridge specification.... much flexible than other PaaS solutions
– Is not easy to achieve a stable OSE infrastructure .
– Infrastructure custom monitoring solution is a MUST.
– Intuitive and useful OpenShift's eclipse plugins.
– ssh to GEAR is one of the most useful feature.

CONCLUSION (I)

● We have learned a lot of new things ...
– Monolithic applications don't fit well in a PaaS environment.
– PaaS is the perfect environment for Microservices applications.
– The twelve-factor app, is the core pattern for PaaS applications

http://12factor.net/build-release-run
– PaaS administration team, why DevOps skill is a must ?

● Installation, configuration and integration with external components is complex …
● Monitoring, lots of Ruby, Java, bash scripts ...
● From development perspective PaaS is always the culprit …
● CI/CD/Maven/Git/Cartridge is a complex ecosystem for troubleshooting …

CONCLUSION (II)

PRODUBAN PAAS STRATEGY

OPENSHIFT 3 BETA

● We are involved in OpenShift 3 beta
– Already tested OpenShift Origin Alpha.
– Docker ecosystem is great!.
– We have started with Drop 3.
– Several teams were testing OpenShift V3 beta.
– We have opened lots of issues in GitHub.

Service Marketplace: We feel very comfortable with Cloud Foundry
Marketplace architecture, we would like to see something similar in
OpenShift …. why not reuse the CF's Service Broker API ?

http://docs.cloudfoundry.org/services/api.html

THE TEAM

PILAR

ALFREDO

CRISTIAN

DAVID

THE TEAM

ANIA

ALFREDO

CRISTIAN
DAVID

MIGUEL

CARLOS

JOSE

ANDREA

RAUL

MARIO

JORGE

NURIA

JUAN

DANI

DANI

CARLOS

AGUSTIN

PEDRO

RODRIGO

CARLOS
ANTONIO

OSCAR

ROBERTO

JONAS

MANOLO

MARK

RAQUEL

JAVIERLLUIS

PABLO

ROBERTO

CRISTIAN

MIGUEL ANGEL
PILAR

EDUARDO

SILVIA

XAVI
ENRIQUE

DAVID

SERGIO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

