

BOSTON, MA JUNE 23-26, 2015

Enabling the Data Driven Enterprise The right platform for your open source workloads

Matthew Curley Hewlett-Packard Technologist, Enterprise Group Density Optimized Servers 6/25/2015

#redhat #rhsummit

Main content

Why the HP Apollo 4000 Series

HP and Red Hat help optimize value of open source deployments

Apollo 4000 solution use case: HP Servers is investing in Ceph

Introduction

#redhat #rhsummit

ISS/Density Optimized Servers

• My focus around dense storage solutions

Scale-out storage solutions on industry standard hardware

• Big Data and object storage

Commercial and open source solutions

• Open source important to enterprise customers & HP

BOSTON, MA JUNE 23-26, 2015

#redhat #rhsummit

Overview

Data growth and IT complexity soaring A new approach for speed, agility, and security needed

Object storage environment architecture Storage on servers

Scale-out storage solution categories

From most to least open source control

Open Source Community Versions

- Dynamic development cycles
- Large amount of packages
- Community driven
- Little to no software cost
- Not all features Enterprise Ready
- No support included
- No HW/SW certifications

Enterprise-ready Distributions

- Selected packages
- Based on Open Source \mathbf{O}
- Additional commercial packages ightarrow
- Contribute back to the Open Source community \mathbf{O}
- Charging for support and some additional features
- lacksquareIntegrated Solutions
- Reference Architectures
- Certification ecosystem with ISVs and OEMs \mathbf{O}

Proprietary

- Proprietary algorithms
- In-house software development
- Special modules for Standards
- Significant license and support cost

HP Apollo 4000 Family

#redhat #rhsummit

Better industry-standard Outgrowing 12 drive, 2U

At large scale, you need improved \$/GB and GB/Rack U

But it's more then just stuffing drives in a chassis

HP ProLiant DL380

#redhat #rhsummit

Better industry-standard building blocks at scale

Apollo 4000 System

Density Optimized Storage Servers

Choosing a dense storage building block

CPU Density Apollo 4530 Gen9 3 compute nodes in 4U

up to 15 LFF and 2 SFF hard drives per node.

1 Compute node in 2U Up to 28 LFF or 50 SFF Hard Drives

Apollo 4200 System

Drive Density

Apollo 4510 Gen9 (available 8/17/2015)

1 compute node in 4U up to 68 LFF and 2 SFF hard drives.

Why Apollo 4000 family is a better fit for scale-out solutions

Footprint Storage & rack density

Performance More throughput More slots & qualified options

Key HP Differentiators

Cost Reduced TCO vs typical white box building blocks

Security HP Secure Encryption FIPS 140-2 on standard drives

Apollo 4500 Gen9

Purpose built for Big Data and Scale-out Storage Applications

Density optimized

Up to 30 nodes per rack or ~5.4 PB per 42U rack

Configuration flexibility

Compute, Storage, and Networking

Shared Chassis Resources

Power, cooling, management

Gen9 improvements

4U Chassis; New drive carrier

5 I/O slots; 4 standard PCIe and 1 FlexibleLOM

Socket R (vs Socket B in Gen 8)

Optional H or P series controller option for two boot drives

Additional support for M.2

3 x 15

Apollo 4500 Gen9

Apollo 4530 rear view

- 4 PCI Express Gen 3 slots
- 4 FHHL x8
- 1 x8 slot w/drive controller

Management module

- Shared iLO port goes to 1Gb
- Support for new enhanced SL-APM

#redhat #rhsummit

Gen 9 power supplies • Choice of AC or DC supplies

Apollo 4200 Gen9

Scale-out storage in a tried-and-true size

Density optimized

Up to 1000 SFF drives or ~3.36 PB per 42U rack

Datacenter Standards

2U form factor, fits in 1075mm rack

24 Front-loading & 2-4 rear cage hot plug drives.

Gen9 Features

Up to 8 I/O slots, 7 PCI and 1 FlexibleLOM

Socket R

Optional H or P series controller option for two boot drives

Additional support for M.2

Same new drive carrier as Apollo 4500 Gen9

Apollo 4200 Gen9

Rear view

Rear Drive Cage Kit 2 SFF + 2 FHHL x8 slots (shown) Or 4 LFF

CPU #2 Slots HHHL x16, x8, x16

2x1Gb NICs Embedded

FlexibleLOM

Gen 9 power supplies Choice of AC or DC supplies

CPU #1 Slots HHHL x8, x16

Building a better solution with Open Source On HP servers and Red Hat software

#redhat #rhsummit

Extending a proven partnership for success

Market Development

Superior Results: Most servers and storage certified Leading benchmark results

Our Alliance

Open Source and Open Standards Innovation

Superior Alignment: Partnering to deliver the future of computing

#redhat #rhsummit

Certification, Integration, **Support**

Superior Experience: Over 4,000 Linux Service Professionals x86 server Linux market share leader

Øur Customers

Superior Commitment: More customers run RHEL on HP servers than any other platform

Strategic Development

Open source to the enterprise

#redhat #rhsummit

Why invest in open source solutions

Enterprise scale-out storage customers want a flexible, powerful tool As well as support that works with how they use it

The right set of functions

Red Hat storage differentiators

Based on open source

- Customers can extend / modify the solution
- Open API allows easy implementation and adaption in application layer

No design trade-offs

- The right solution to the right problem
- No inflexible one-size fits all approach

Backed by Red Hat

- Well-known partner to HP with established processes
- Proven support and well-known in the field

Based on Red Hat Enterprise Linux

• Together with HP servers the most and best selling server-OS combination

Red Hat Storage and HP Apollo Servers

Business outcomes

Reliable performance

data protection.

Unmatched scalability

High-density compute and storage, with the ability to independently scale components up or out.

#redhat #rhsummit

Workload-optimized platforms with rightsized availability, management features, and

Red Hat Storage and HP Apollo Servers

Business outcomes

Faster time-

Purpose-built s and design.

\$

Reduced risk

Partners committed to a mission-critical x86 architecture and long-term, customer-focused roadmap.

Lower cost of ownership

Affordable, workload-optimized, scalable industry standard platforms and open solutions.

Purpose-built solutions eliminate months of planning

HP Servers Investment in Ceph

#redhat #rhsummit

Brief overview

Open Source **Community Version**

Object Storage cluster

2014.

Supports object, block, and file* access models

•VM Storage on block, cloud, and tenant object storage are key current use cases.

•Can integrate with OpenStack.

Inktank key developer, acquired by Red Hat in April

Enterprise-ready Distribution

RED HAT* STORAGE

* File is available, but not fully enterprise-ready today.

HP is investing resources in Ceph Staffed engineering team, 100% upstream contribution focus

Management

Deployment, provisioning, configuration management

#redhat #rhsummit

Help advance Ceph installation, operation, and performance experience Red Hat & open source community supporting collaboration

> Cluster reference architectures and performance improvements

Need: better ways to map cluster state and decisions to the hardware it runs on. Integrate HP's hardware knowledge into cluster management.

First step: helping design this integration on Ceph

First functional goal: blink drive LEDs when a Ceph OSD fails.

Future work ideas:

- Query drive health data
- Query controller management tools
- GUI buttons for LED toggling.
- Fetch vendor specific IPMI/BMC information.

Cluster Management

Provisioning and Configuring Ceph

Bare metal/VM life cycle tool

Configuration management utility

Ceph.

User experience:

- Contributions here make deploying on HP hardware easy for customers • Helps enforce proper/optimal configurations • Foreman/Puppet aligned with RH story

- Need: an easier way to go from factory hardware to running Ceph cluster
- First step: improve our own lab deployment and lifecycle management story
- First functional goal: Foreman to configure our hardware, Puppet to set up

Future work can help build more complicated Ceph configurations, or best practice modifications to operating clusters. Also leverage on other solutions

Building better clusters

Need: ability to recommend the right hardware for a customer purchase

evaluating HP hardware portfolio.

case templates.

Future work areas:

- Continue testing configurations of interest to user community, share results and use as input to builder tools.
- Build better reference architectures and technical guidance.

- First step: Engineering team to build process around
- First functional goal: Build common scale/performance

Building better clusters

Need: performance to reach more use cases

First step: Code investigation around storage performance (focus on OSD).

profiling data, initial small performance pulls/contribution.

latency and improve density.

- First functional goal: Source base knowledge, relevant
- Future code work around technologies that reduce

HP Helion and Ceph

private cloud solution

code customization

DO Servers teams are platform consultants Our performance evaluation and product improvements roll back to open source.

- Uses Ceph for block/object storage in an Open Stack
- Reduce installation and management complexity, no
- Focused use case improves qualification, enables targeted value-add features

Enabling the Data Driven Enterprise

Apollo 4000 and Red Hat Software the right platform for your open source workloads

Visit our website: www.hp.com/go/objectstorage

Questions?

Thank You

• Hyperscale Storage Ecosystem: bigdataecosystem@hp.com SL4500 / Apollo 4000: Apollo4000@hp.com

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

#redhat #rhsummit

RED HAT SUMMIT

